exterminate 发表于 2025-3-21 16:36:31
书目名称Computer Vision – ECCV 2022影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0234248<br><br> <br><br>书目名称Computer Vision – ECCV 2022影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0234248<br><br> <br><br>书目名称Computer Vision – ECCV 2022网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0234248<br><br> <br><br>书目名称Computer Vision – ECCV 2022网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0234248<br><br> <br><br>书目名称Computer Vision – ECCV 2022被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0234248<br><br> <br><br>书目名称Computer Vision – ECCV 2022被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0234248<br><br> <br><br>书目名称Computer Vision – ECCV 2022年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0234248<br><br> <br><br>书目名称Computer Vision – ECCV 2022年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0234248<br><br> <br><br>书目名称Computer Vision – ECCV 2022读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0234248<br><br> <br><br>书目名称Computer Vision – ECCV 2022读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0234248<br><br> <br><br>filial 发表于 2025-3-21 21:12:21
http://reply.papertrans.cn/24/2343/234248/234248_2.pngInexorable 发表于 2025-3-22 00:28:31
http://reply.papertrans.cn/24/2343/234248/234248_3.pngComedienne 发表于 2025-3-22 05:15:44
,Pose Forecasting in Industrial Human-Robot Collaboration,ions, taking place during the human-cobot interaction. We test SeS-GCN on CHICO for two important perception tasks in robotics: human pose forecasting, where it reaches an average error of 85.3 mm (MPJPE) at 1 sec in the future with a run time of 2.3 ms, and collision detection, by comparing the for北京人起源 发表于 2025-3-22 10:34:20
http://reply.papertrans.cn/24/2343/234248/234248_5.pngbadinage 发表于 2025-3-22 15:36:29
http://reply.papertrans.cn/24/2343/234248/234248_6.pngbadinage 发表于 2025-3-22 19:41:13
,Domain Knowledge-Informed Self-supervised Representations for Workout Form Assessment,ngles, clothes, and illumination to learn powerful representations. To facilitate our self-supervised pretraining, and supervised finetuning, we curated a new exercise dataset, . (.), comprising of three exercises: BackSquat, BarbellRow, and OverheadPress. It has been annotated by expert trainers foforthy 发表于 2025-3-22 23:42:56
,Responsive Listening Head Generation: A Benchmark Dataset and Baseline,ation, listening head generation takes as input both the audio and visual signals from the speaker, and gives non-verbal feedbacks (.., head motions, facial expressions) in a real-time manner. Our dataset supports a wide range of applications such as human-to-human interaction, video-to-video translEulogy 发表于 2025-3-23 04:16:21
,Towards Scale-Aware, Robust, and Generalizable Unsupervised Monocular Depth Estimation by Integratitainty measure, which is non-trivial for unsupervised methods. By leveraging IMU during training, DynaDepth not only learns an absolute scale, but also provides a better generalization ability and robustness against vision degradation such as illumination change and moving objects. We validate the eCoterminous 发表于 2025-3-23 08:55:47
TIPS: Text-Induced Pose Synthesis,pose transfer framework where we also introduce a new dataset DF-PASS, by adding descriptive pose annotations for the images of the DeepFashion dataset. The proposed method generates promising results with significant qualitative and quantitative scores in our experiments.