DEIFY 发表于 2025-3-21 18:17:57
书目名称Computer Vision – ECCV 2020影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0234229<br><br> <br><br>书目名称Computer Vision – ECCV 2020影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0234229<br><br> <br><br>书目名称Computer Vision – ECCV 2020网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0234229<br><br> <br><br>书目名称Computer Vision – ECCV 2020网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0234229<br><br> <br><br>书目名称Computer Vision – ECCV 2020被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0234229<br><br> <br><br>书目名称Computer Vision – ECCV 2020被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0234229<br><br> <br><br>书目名称Computer Vision – ECCV 2020年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0234229<br><br> <br><br>书目名称Computer Vision – ECCV 2020年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0234229<br><br> <br><br>书目名称Computer Vision – ECCV 2020读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0234229<br><br> <br><br>书目名称Computer Vision – ECCV 2020读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0234229<br><br> <br><br>赏钱 发表于 2025-3-21 20:56:54
http://reply.papertrans.cn/24/2343/234229/234229_2.png能够支付 发表于 2025-3-22 02:26:16
Semi-Siamese Training for Shallow Face Learning,fficient number of samples) for training. However, in many real-world scenarios of face recognition, the training dataset is limited in depth, . only two face images are available for each ID. . Unlike deep face data, the shallow face data lacks intra-class diversity. As such, it can lead to collaps出生 发表于 2025-3-22 05:08:24
http://reply.papertrans.cn/24/2343/234229/234229_4.png斥责 发表于 2025-3-22 10:12:44
http://reply.papertrans.cn/24/2343/234229/234229_5.png宏伟 发表于 2025-3-22 13:22:01
http://reply.papertrans.cn/24/2343/234229/234229_6.png宏伟 发表于 2025-3-22 20:28:26
Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation,nteractions. Recent works prove it possible to stack self-attention layers to obtain a fully attentional network by restricting the attention to a local region. In this paper, we attempt to remove this constraint by factorizing 2D self-attention into two 1D self-attentions. This reduces computationDorsal 发表于 2025-3-23 00:29:44
Adaptive Computationally Efficient Network for Monocular 3D Hand Pose Estimation,nced algorithms to achieve high pose estimation accuracy. However, besides accuracy, the computation efficiency that affects the computation speed and power consumption is also crucial for real-world applications. In this paper, we investigate the problem of reducing the overall computation cost yetGanglion 发表于 2025-3-23 02:11:28
http://reply.papertrans.cn/24/2343/234229/234229_9.pngeuphoria 发表于 2025-3-23 06:51:17
Distribution-Balanced Loss for Multi-label Classification in Long-Tailed Datasets,. Compared to conventional single-label classification problem, multi-label recognition problems are often more challenging due to two significant issues, namely the co-occurrence of labels and the dominance of negative labels (when treated as multiple binary classification problems). The Distributi