归纳 发表于 2025-3-21 16:12:22
书目名称Computer Vision – ECCV 2018影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0234194<br><br> <br><br>书目名称Computer Vision – ECCV 2018影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0234194<br><br> <br><br>书目名称Computer Vision – ECCV 2018网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0234194<br><br> <br><br>书目名称Computer Vision – ECCV 2018网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0234194<br><br> <br><br>书目名称Computer Vision – ECCV 2018被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0234194<br><br> <br><br>书目名称Computer Vision – ECCV 2018被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0234194<br><br> <br><br>书目名称Computer Vision – ECCV 2018年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0234194<br><br> <br><br>书目名称Computer Vision – ECCV 2018年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0234194<br><br> <br><br>书目名称Computer Vision – ECCV 2018读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0234194<br><br> <br><br>书目名称Computer Vision – ECCV 2018读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0234194<br><br> <br><br>空中 发表于 2025-3-21 23:19:11
http://reply.papertrans.cn/24/2342/234194/234194_2.png有权 发表于 2025-3-22 02:29:02
http://reply.papertrans.cn/24/2342/234194/234194_3.png并排上下 发表于 2025-3-22 05:50:52
http://reply.papertrans.cn/24/2342/234194/234194_4.pngSSRIS 发表于 2025-3-22 08:46:22
https://doi.org/10.1007/978-3-319-92885-2 trainable. Using this method in the basic SSD system, our models achieve consistent and significant boosts compared with the original model and its other variations, without losing real-time processing speed.把手 发表于 2025-3-22 14:59:21
https://doi.org/10.1007/978-3-031-21952-8ibution, avoiding to manually impose any threshold on the proportion of outliers in the training set. Extensive experimental evaluations on four different tasks (facial and fashion landmark detection, age and head pose estimation) lead us to conclude that our novel robust technique provides reliabil把手 发表于 2025-3-22 20:19:46
http://reply.papertrans.cn/24/2342/234194/234194_7.pngincision 发表于 2025-3-23 00:37:11
Unsupervised Holistic Image Generation from Key Local Patchest images are realistic. The proposed network is trained without supervisory signals since no labels of key parts are required. Experimental results on seven datasets demonstrate that the proposed algorithm performs favorably on challenging objects and scenes.Oscillate 发表于 2025-3-23 02:18:15
http://reply.papertrans.cn/24/2342/234194/234194_9.png馆长 发表于 2025-3-23 09:15:06
http://reply.papertrans.cn/24/2342/234194/234194_10.png