相持不下 发表于 2025-3-21 16:08:20
书目名称Computer Vision – ECCV 2018影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0234191<br><br> <br><br>书目名称Computer Vision – ECCV 2018影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0234191<br><br> <br><br>书目名称Computer Vision – ECCV 2018网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0234191<br><br> <br><br>书目名称Computer Vision – ECCV 2018网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0234191<br><br> <br><br>书目名称Computer Vision – ECCV 2018被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0234191<br><br> <br><br>书目名称Computer Vision – ECCV 2018被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0234191<br><br> <br><br>书目名称Computer Vision – ECCV 2018年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0234191<br><br> <br><br>书目名称Computer Vision – ECCV 2018年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0234191<br><br> <br><br>书目名称Computer Vision – ECCV 2018读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0234191<br><br> <br><br>书目名称Computer Vision – ECCV 2018读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0234191<br><br> <br><br>indignant 发表于 2025-3-21 20:50:38
http://reply.papertrans.cn/24/2342/234191/234191_2.png缺陷 发表于 2025-3-22 01:13:50
Super-Identity Convolutional Neural Network for Face Hallucinationy metric for faces from these two domains. Extensive experimental evaluations demonstrate that the proposed SICNN achieves superior visual quality over the state-of-the-art methods on a challenging task to super-resolve 12 . 14 faces with an 8. upscaling factor. In addition, SICNN significantly impr缝纫 发表于 2025-3-22 06:40:02
http://reply.papertrans.cn/24/2342/234191/234191_4.pngCLOT 发表于 2025-3-22 10:05:12
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3input images while adding photorealism and retaining identity information. We combine face images generated by the proposed method with a real data set to train face recognition algorithms and evaluate the model quantitatively on two challenging data sets: LFW and IJB-A. The generated images by ourfaculty 发表于 2025-3-22 16:16:54
HairNet: Single-View Hair Reconstruction Using Convolutional Neural Networks continuous representation for hairstyles, which allows us to interpolate naturally between hairstyles. We use a large set of rendered synthetic hair models to train our network. Our method scales to real images because an intermediate 2D orientation field, automatically calculated from the real imafaculty 发表于 2025-3-22 17:25:40
http://reply.papertrans.cn/24/2342/234191/234191_7.png形容词 发表于 2025-3-22 21:47:47
http://reply.papertrans.cn/24/2342/234191/234191_8.pngBALK 发表于 2025-3-23 04:27:54
Populations of Small Solar System Bodies,viors are heavily influenced by known areas in the images (., upcoming turns). CAR-Net successfully attends to these salient regions. Additionally, CAR-Net reaches state-of-the-art accuracy on the standard trajectory forecasting benchmark, Stanford Drone Dataset (SDD). Finally, we show CAR-Net’s abi入会 发表于 2025-3-23 08:35:16
https://doi.org/10.1057/9780333982921y metric for faces from these two domains. Extensive experimental evaluations demonstrate that the proposed SICNN achieves superior visual quality over the state-of-the-art methods on a challenging task to super-resolve 12 . 14 faces with an 8. upscaling factor. In addition, SICNN significantly impr