relapse 发表于 2025-3-21 19:41:00
书目名称Computer Vision – ECCV 2016影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0234178<br><br> <br><br>书目名称Computer Vision – ECCV 2016影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0234178<br><br> <br><br>书目名称Computer Vision – ECCV 2016网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0234178<br><br> <br><br>书目名称Computer Vision – ECCV 2016网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0234178<br><br> <br><br>书目名称Computer Vision – ECCV 2016被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0234178<br><br> <br><br>书目名称Computer Vision – ECCV 2016被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0234178<br><br> <br><br>书目名称Computer Vision – ECCV 2016年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0234178<br><br> <br><br>书目名称Computer Vision – ECCV 2016年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0234178<br><br> <br><br>书目名称Computer Vision – ECCV 2016读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0234178<br><br> <br><br>书目名称Computer Vision – ECCV 2016读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0234178<br><br> <br><br>倒转 发表于 2025-3-21 23:51:27
Faceless Person Recognition: Privacy Implications in Social Medias works contributes to the understanding of privacy implications of such data sharing by analysing how well people are recognisable in social media data. To facilitate a systematic study we define a number of scenarios considering factors such as how many heads of a person are tagged and if those he防锈 发表于 2025-3-22 01:33:05
Segmental Spatiotemporal CNNs for Fine-Grained Action Segmentationskill evaluation. However, despite substantial recent progress in large-scale action classification, the performance of state-of-the-art fine-grained action recognition approaches remains low. We propose a model for action segmentation which combines low-level spatiotemporal features with a high-levCREEK 发表于 2025-3-22 08:22:50
http://reply.papertrans.cn/24/2342/234178/234178_4.pnglambaste 发表于 2025-3-22 11:31:11
Evaluation of LBP and Deep Texture Descriptors with a New Robustness Benchmarktistage convolutional networks and deep learning have also emerged. In different papers the performance comparison of the proposed methods to earlier approaches is mainly done with some well-known texture datasets, with differing classifiers and testing protocols, and often not using the best sets o壕沟 发表于 2025-3-22 15:53:19
http://reply.papertrans.cn/24/2342/234178/234178_6.png壕沟 发表于 2025-3-22 20:29:49
http://reply.papertrans.cn/24/2342/234178/234178_7.pngChagrin 发表于 2025-3-22 23:24:46
A 4D Light-Field Dataset and CNN Architectures for Material Recognition4D light-field. Our dataset contains 12 material categories, each with 100 images taken with a Lytro Illum, from which we extract about 30,000 patches in total. To the best of our knowledge, this is the first mid-size dataset for light-field images. Our main goal is to investigate whether the additiRepetitions 发表于 2025-3-23 03:08:01
http://reply.papertrans.cn/24/2342/234178/234178_9.png耐寒 发表于 2025-3-23 05:57:32
All-Around Depth from Small Motion with a Spherical Panoramic Camerar vision. For capturing full 360 degree panoramas in a single shot, the Spherical Panoramic Camera (SPC) are gaining in popularity. However, estimating depth from a SPC remains a challenging problem. In this paper, we propose a practical method that generates all-around dense depth map using a narro