躺下残杀 发表于 2025-3-25 06:43:29
http://reply.papertrans.cn/24/2342/234175/234175_21.pngfigure 发表于 2025-3-25 09:47:47
Peter Bleses,Martin Seeleib-Kaiserrnels on learned representations is limited. In this work, we explore and employ the relationship between shape of kernels which define receptive fields (RFs) in CNNs for learning of feature representations and image classification. For this purpose, we present a feature visualization method for visaerial 发表于 2025-3-25 13:08:13
http://reply.papertrans.cn/24/2342/234175/234175_23.png用不完 发表于 2025-3-25 17:52:56
http://reply.papertrans.cn/24/2342/234175/234175_24.pngAMITY 发表于 2025-3-25 22:20:28
Bastian Leibe,Jiri Matas,Max WellingIncludes supplementary material:FUSC 发表于 2025-3-26 02:55:31
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/234175.jpgmacrophage 发表于 2025-3-26 04:35:53
http://reply.papertrans.cn/24/2342/234175/234175_27.pngAscribe 发表于 2025-3-26 09:13:29
http://reply.papertrans.cn/24/2342/234175/234175_28.pnggenuine 发表于 2025-3-26 12:55:40
http://reply.papertrans.cn/24/2342/234175/234175_29.pngBucket 发表于 2025-3-26 18:33:06
Design of Kernels in Convolutional Neural Networks for Image Classificationed an outstanding performance in the classification task, comparing to a base CNN model that introduces more parameters and computational time, using the ILSVRC-2012 dataset [.]. Additionally, we examined the region of interest (ROI) of different models in the classification task and analyzed the ro