crusade 发表于 2025-3-21 18:59:13

书目名称Computer Vision -- ECCV 2010影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0234155<br><br>        <br><br>书目名称Computer Vision -- ECCV 2010影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0234155<br><br>        <br><br>书目名称Computer Vision -- ECCV 2010网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0234155<br><br>        <br><br>书目名称Computer Vision -- ECCV 2010网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0234155<br><br>        <br><br>书目名称Computer Vision -- ECCV 2010被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0234155<br><br>        <br><br>书目名称Computer Vision -- ECCV 2010被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0234155<br><br>        <br><br>书目名称Computer Vision -- ECCV 2010年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0234155<br><br>        <br><br>书目名称Computer Vision -- ECCV 2010年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0234155<br><br>        <br><br>书目名称Computer Vision -- ECCV 2010读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0234155<br><br>        <br><br>书目名称Computer Vision -- ECCV 2010读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0234155<br><br>        <br><br>

女上瘾 发表于 2025-3-21 21:55:12

http://reply.papertrans.cn/24/2342/234155/234155_2.png

Basilar-Artery 发表于 2025-3-22 01:55:39

Stacked Hierarchical Labeling the image and contextual statistics in the scene. This hierarchy spans coarse-to-fine regions and explicitly models the mixtures of semantic labels that may be present due to imperfect segmentation. To avoid cascading of errors and overfitting, we train the learning problems in sequence to ensure r

来自于 发表于 2025-3-22 04:40:50

http://reply.papertrans.cn/24/2342/234155/234155_4.png

收集 发表于 2025-3-22 11:32:22

On Parameter Learning in CRF-Based Approaches to Object Class Image Segmentationey findings for learning CRF models are, from the obvious to the surprising, i) multiple image features always help, ii) the limiting dimension with respect to current models is the amount of training data, iii) piecewise training is competitive, iv) current methods for max-margin training fail for

宽大 发表于 2025-3-22 13:08:19

http://reply.papertrans.cn/24/2342/234155/234155_6.png

宽大 发表于 2025-3-22 20:50:36

Detecting People Using Mutually Consistent Poselet Activationsstered into mutually consistent hypotheses where consistency is based on empirically determined spatial keypoint distributions. Finally, bounding boxes are predicted for each person hypothesis and shape masks are aligned to edges in the image to provide a segmentation. To the best of our knowledge,

喷出 发表于 2025-3-22 22:52:41

http://reply.papertrans.cn/24/2342/234155/234155_8.png

endure 发表于 2025-3-23 01:46:26

Learning to Detect Roads in High-Resolution Aerial Imagestly developed unsupervised learning methods as well as by taking advantage of the local spatial coherence of the output labels. We show that our method works reliably on two challenging urban datasets that are an order of magnitude larger than what was used to evaluate previous approaches.

Override 发表于 2025-3-23 05:38:20

Thinking Inside the Box: Using Appearance Models and Context Based on Room Geometry accuracy when compared to the state-of-the-art 2D detectors and (b) gives a 3D interpretation of the location of the object, derived from a 2D image. We evaluate the detector on beds, for which we give extensive quantitative results derived from images of real scenes.
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Computer Vision -- ECCV 2010; 11th European Confer Kostas Daniilidis,Petros Maragos,Nikos Paragios Conference proceedings 2010 Springer-Ver