誓约
发表于 2025-3-21 16:05:31
书目名称Computer Science Logic影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0233774<br><br> <br><br>书目名称Computer Science Logic影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0233774<br><br> <br><br>书目名称Computer Science Logic网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0233774<br><br> <br><br>书目名称Computer Science Logic网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0233774<br><br> <br><br>书目名称Computer Science Logic被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0233774<br><br> <br><br>书目名称Computer Science Logic被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0233774<br><br> <br><br>书目名称Computer Science Logic年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0233774<br><br> <br><br>书目名称Computer Science Logic年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0233774<br><br> <br><br>书目名称Computer Science Logic读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0233774<br><br> <br><br>书目名称Computer Science Logic读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0233774<br><br> <br><br>
吸引人的花招
发表于 2025-3-21 23:28:47
http://reply.papertrans.cn/24/2338/233774/233774_2.png
刚开始
发表于 2025-3-22 04:06:54
http://reply.papertrans.cn/24/2338/233774/233774_3.png
COLIC
发表于 2025-3-22 08:29:30
http://reply.papertrans.cn/24/2338/233774/233774_4.png
Resign
发表于 2025-3-22 09:35:20
http://reply.papertrans.cn/24/2338/233774/233774_5.png
Infect
发表于 2025-3-22 16:11:51
A Semantic Formulation of ⊤ ⊤-Lifting and Logical Predicates for Computational Metalanguageexamples, and apply it to the logical predicates for Moggi’s computational metalanguage. We then abstract the semantic ⊤ ⊤-lifting as the lifting of strong monads across bifibrations with lifted symmetric monoidal closed structures.
Infect
发表于 2025-3-22 19:44:17
http://reply.papertrans.cn/24/2338/233774/233774_7.png
独行者
发表于 2025-3-22 21:43:07
Decidability of Type-Checking in the Calculus of Algebraic Constructions with Size Annotations subject by extending it to richer typed .-calculi and rewriting paradigms, culminating in the Calculus of Algebraic Constructions. These works provide theoretical foundations for type-theoretic proof assistants where functions and predicates are defined by oriented higher-order equations. This kind
粉笔
发表于 2025-3-23 02:19:28
On the Role of Type Decorations in the Calculus of Inductive Constructionspeed-ups are achieved by compiling proof terms, see . Since compilation erases some type information, we have to show that convertibility is preserved by type erasure. This article shows the equivalence of the Calculus of Inductive Constructions (formalism of Coq) and its domain-free version wher
Repetitions
发表于 2025-3-23 06:16:24
http://reply.papertrans.cn/24/2338/233774/233774_10.png