变更 发表于 2025-3-21 16:43:42

书目名称Computer Science Logic影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0233760<br><br>        <br><br>书目名称Computer Science Logic影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0233760<br><br>        <br><br>书目名称Computer Science Logic网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0233760<br><br>        <br><br>书目名称Computer Science Logic网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0233760<br><br>        <br><br>书目名称Computer Science Logic被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0233760<br><br>        <br><br>书目名称Computer Science Logic被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0233760<br><br>        <br><br>书目名称Computer Science Logic年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0233760<br><br>        <br><br>书目名称Computer Science Logic年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0233760<br><br>        <br><br>书目名称Computer Science Logic读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0233760<br><br>        <br><br>书目名称Computer Science Logic读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0233760<br><br>        <br><br>

飞来飞去真休 发表于 2025-3-21 22:23:31

http://reply.papertrans.cn/24/2338/233760/233760_2.png

nonchalance 发表于 2025-3-22 00:47:31

http://reply.papertrans.cn/24/2338/233760/233760_3.png

黄油没有 发表于 2025-3-22 08:33:43

http://reply.papertrans.cn/24/2338/233760/233760_4.png

描述 发表于 2025-3-22 08:51:02

http://reply.papertrans.cn/24/2338/233760/233760_5.png

使更活跃 发表于 2025-3-22 15:27:06

https://doi.org/10.1007/978-1-4684-6970-7at of .. We show that monotonic games are in general undecidable. We identify a subclass of monotonic games, called . games. We provide algorithms for analyzing downward closed games subject to winning conditions which are formulated as safety properties.

使更活跃 发表于 2025-3-22 19:43:50

http://reply.papertrans.cn/24/2338/233760/233760_7.png

祖传财产 发表于 2025-3-22 22:36:47

http://reply.papertrans.cn/24/2338/233760/233760_8.png

卜闻 发表于 2025-3-23 01:28:31

Sabine Ring,Alexander H. Enk,Karsten Mahnkes of . . are strongly normalizable. This was proved in by Di Cosmo & al. by using a translation of . . into the proof nets of linear logic. We give here a direct and elementary proof of this result. The strong normalization is also proved for terms typable with second order types (the extension of Girard’s system F). This is a new result.

空中 发表于 2025-3-23 08:15:51

http://reply.papertrans.cn/24/2338/233760/233760_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Computer Science Logic; 17th International W Matthias Baaz,Johann A. Makowsky Conference proceedings 2003 Springer-Verlag Berlin Heidelberg