EXTRA 发表于 2025-3-21 17:43:53
书目名称Computer Algebra影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0233392<br><br> <br><br>书目名称Computer Algebra影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0233392<br><br> <br><br>书目名称Computer Algebra网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0233392<br><br> <br><br>书目名称Computer Algebra网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0233392<br><br> <br><br>书目名称Computer Algebra被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0233392<br><br> <br><br>书目名称Computer Algebra被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0233392<br><br> <br><br>书目名称Computer Algebra年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0233392<br><br> <br><br>书目名称Computer Algebra年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0233392<br><br> <br><br>书目名称Computer Algebra读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0233392<br><br> <br><br>书目名称Computer Algebra读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0233392<br><br> <br><br>perimenopause 发表于 2025-3-21 23:58:08
1867-5506 ters offer extensions into more advanced topics: simplification and normal forms, power series, summation formulas, and integration...Computer Algebra. is an indispensable resource for mathematics and computer 978-3-030-78019-7978-3-030-78017-3Series ISSN 1867-5506 Series E-ISSN 1867-5514Nomogram 发表于 2025-3-22 02:07:11
https://doi.org/10.1007/978-3-030-13431-0Before we discuss mathematical algorithms and their programming, we want to show the capabilities of a general computer algebra system such as . (The same questions can be also treated with the systems . and .,and the corresponding worksheets can be downloaded from .).埋葬 发表于 2025-3-22 05:06:13
http://reply.papertrans.cn/24/2334/233392/233392_4.pngGEAR 发表于 2025-3-22 08:46:38
https://doi.org/10.1007/978-3-030-13431-0The integers with their operations addition and multiplication . form a commutative ring with unity 1. Now, we would like to translate this algebraic structure to finite subsets of .. This is done by identification of certain elements in . that lie in common arithmetic progressions.exhibit 发表于 2025-3-22 16:44:33
http://reply.papertrans.cn/24/2334/233392/233392_6.pngexhibit 发表于 2025-3-22 20:01:40
Systems Engineering & ManagementIn the sequel (if not stated otherwise), we assume that . is a zero-divisor-free ring with unity 1. Such a ring is called an integral domain.Nonporous 发表于 2025-3-23 00:45:57
http://reply.papertrans.cn/24/2334/233392/233392_8.pngjettison 发表于 2025-3-23 04:52:43
https://doi.org/10.1007/978-1-4614-6663-5The aim of this chapter is the development of efficient algorithms for factorization in ℚ[.]. For this purpose, efficient factorization algorithms for ℤ.[.] are used which, of course, are interesting by themselves.雪崩 发表于 2025-3-23 09:10:59
https://doi.org/10.1007/978-1-4614-6663-5If we call a simplification command like ., ., . or . in ., then algebraic expressions are replaced by (hopefully) mathematically equivalent ones. Therefore the general question arises under which circumstances such transformations are possible and which types of simplifications can be executed.