侵蚀 发表于 2025-3-23 13:29:29
http://reply.papertrans.cn/24/2333/233266/233266_11.pngNausea 发表于 2025-3-23 17:35:42
Algorithms for the Toric Hilbert Schemenected. In this chapter we illustrate the use of . for exploring the structure of toric Hilbert schemes. In the process we will encounter algorithms from commutative algebra, algebraic geometry, polyhedral theory and geometric combinatorics.戏法 发表于 2025-3-23 19:58:04
http://reply.papertrans.cn/24/2333/233266/233266_13.png谁在削木头 发表于 2025-3-24 00:33:32
https://doi.org/10.1007/978-3-662-04851-1Groebner bases; algebraic geometry; algorithms; commutative algebra; computer algebra system; symbolic alTriglyceride 发表于 2025-3-24 02:54:31
http://reply.papertrans.cn/24/2333/233266/233266_15.pngAntagonist 发表于 2025-3-24 07:45:24
http://reply.papertrans.cn/24/2333/233266/233266_16.png莎草 发表于 2025-3-24 13:05:05
http://reply.papertrans.cn/24/2333/233266/233266_17.pngFEAS 发表于 2025-3-24 15:46:28
http://reply.papertrans.cn/24/2333/233266/233266_18.pngIngredient 发表于 2025-3-24 20:57:48
https://doi.org/10.1007/978-3-0348-7500-4This chapter presents a collection of graduate level problems in algebraic geometry illustrating the power of . as an educational tool.上涨 发表于 2025-3-25 01:54:31
H.-H. Strehblow,P. Borthen,P. DruskaMonomial ideals form an important link between commutative algebra and combinatorics. In this chapter, we demonstrate how to implement algorithms in . for studying and using monomial ideals. We illustrate these methods with examples from combinatorics, integer programming, and algebraic geometry.