法律 发表于 2025-3-28 17:23:01

http://reply.papertrans.cn/24/2332/233149/233149_41.png

一条卷发 发表于 2025-3-28 20:23:32

http://reply.papertrans.cn/24/2332/233149/233149_42.png

oncologist 发表于 2025-3-29 02:16:07

http://reply.papertrans.cn/24/2332/233149/233149_43.png

recede 发表于 2025-3-29 03:45:14

Introductiontochastic setting of SP. We assume that the reader is familiar with LP and skip all the fundamental concepts of LP such as duality theory and sensitivity analysis. Understanding these LP concepts is important to studying SP. We first introduce scenario trees for representing the underlying stochasti

GRAZE 发表于 2025-3-29 08:51:39

http://reply.papertrans.cn/24/2332/233149/233149_45.png

Flustered 发表于 2025-3-29 12:23:05

http://reply.papertrans.cn/24/2332/233149/233149_46.png

有效 发表于 2025-3-29 18:23:51

http://reply.papertrans.cn/24/2332/233149/233149_47.png

燕麦 发表于 2025-3-29 22:33:36

Mean-Risk Stochastic Linear Programming Methodspter, we turn to the derivation of two subgradient-based algorithms for the deviation risk measure . (ASD), termed . and . algorithms. Unlike MR-SLP with QDEV, CVaR, and EE, the DEP for ASD has a block angular structure due to a set of linking constraints. Therefore, the L-shaped method is . applica
页: 1 2 3 4 [5]
查看完整版本: Titlebook: Computational Stochastic Programming; Models, Algorithms, Lewis Ntaimo Book 2024 Springer Nature Switzerland AG 2024 Mean-risk linear and