morphology 发表于 2025-3-21 17:09:45
书目名称Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0232833<br><br> <br><br>书目名称Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0232833<br><br> <br><br>书目名称Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0232833<br><br> <br><br>书目名称Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0232833<br><br> <br><br>书目名称Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0232833<br><br> <br><br>书目名称Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0232833<br><br> <br><br>书目名称Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0232833<br><br> <br><br>书目名称Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0232833<br><br> <br><br>书目名称Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0232833<br><br> <br><br>书目名称Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0232833<br><br> <br><br>cauda-equina 发表于 2025-3-21 21:02:17
http://reply.papertrans.cn/24/2329/232833/232833_2.png滋养 发表于 2025-3-22 04:06:56
http://reply.papertrans.cn/24/2329/232833/232833_3.png相反放置 发表于 2025-3-22 05:02:46
http://reply.papertrans.cn/24/2329/232833/232833_4.png飞来飞去真休 发表于 2025-3-22 09:56:15
Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics978-3-319-91494-7Series ISSN 1871-3033 Series E-ISSN 2543-0203商业上 发表于 2025-3-22 13:51:09
https://doi.org/10.1007/978-981-10-0527-5tion-theoretic explanation for the origin of the observed states. In turbulent wall-bounded shear flows, these states have been hypothesized to be saddle points organizing the trajectories within a chaotic attractor. These states must be computed with Newton’s method or one of its generalizations, s商业上 发表于 2025-3-22 18:50:23
http://reply.papertrans.cn/24/2329/232833/232833_7.pnghereditary 发表于 2025-3-22 21:32:23
Yukawa Couplings Between (2, 1)-Forms,equations around its fixed point in a frequency domain formulation. While the most amplified stability eigenmode is readily identified by a power method, the technical challenge is the computation of more damped higher-order eigenmodes. This challenge is addressed by a novel method to compute unstab莎草 发表于 2025-3-23 04:28:16
http://reply.papertrans.cn/24/2329/232833/232833_9.pngnegotiable 发表于 2025-3-23 08:23:41
https://doi.org/10.1007/978-981-99-4649-5lysis. The bifurcation points on the branches of solutions are determined with precision by calculating their spectra for a large range of Rayleigh numbers. It will be seen that continuation and stability methods are a powerful tool to analyze the origin of the hydrodynamic instabilities leading to