exterminate 发表于 2025-3-21 18:08:46

书目名称Computational Mechanics of Nonlinear Response of Shells影响因子(影响力)<br>        http://impactfactor.cn/2024/if/?ISSN=BK0232676<br><br>        <br><br>书目名称Computational Mechanics of Nonlinear Response of Shells影响因子(影响力)学科排名<br>        http://impactfactor.cn/2024/ifr/?ISSN=BK0232676<br><br>        <br><br>书目名称Computational Mechanics of Nonlinear Response of Shells网络公开度<br>        http://impactfactor.cn/2024/at/?ISSN=BK0232676<br><br>        <br><br>书目名称Computational Mechanics of Nonlinear Response of Shells网络公开度学科排名<br>        http://impactfactor.cn/2024/atr/?ISSN=BK0232676<br><br>        <br><br>书目名称Computational Mechanics of Nonlinear Response of Shells被引频次<br>        http://impactfactor.cn/2024/tc/?ISSN=BK0232676<br><br>        <br><br>书目名称Computational Mechanics of Nonlinear Response of Shells被引频次学科排名<br>        http://impactfactor.cn/2024/tcr/?ISSN=BK0232676<br><br>        <br><br>书目名称Computational Mechanics of Nonlinear Response of Shells年度引用<br>        http://impactfactor.cn/2024/ii/?ISSN=BK0232676<br><br>        <br><br>书目名称Computational Mechanics of Nonlinear Response of Shells年度引用学科排名<br>        http://impactfactor.cn/2024/iir/?ISSN=BK0232676<br><br>        <br><br>书目名称Computational Mechanics of Nonlinear Response of Shells读者反馈<br>        http://impactfactor.cn/2024/5y/?ISSN=BK0232676<br><br>        <br><br>书目名称Computational Mechanics of Nonlinear Response of Shells读者反馈学科排名<br>        http://impactfactor.cn/2024/5yr/?ISSN=BK0232676<br><br>        <br><br>

Pandemic 发表于 2025-3-21 22:19:16

http://reply.papertrans.cn/24/2327/232676/232676_2.png

exclamation 发表于 2025-3-22 04:28:30

Elastic-Plastic Analysis of Thin Shells and Folded Plate Structures with Finite Rotations small, moderate, large or finite rotations. Going from moderate to finite rotations a significant difficulty of nonlinear shell theories is associated with the incorporation of rotations into the general shell equations since finite rotations are not commutative and thus do not transform like vecto

bacteria 发表于 2025-3-22 05:58:03

On the Optention of the Tangent Matrix for Geometrically Nonlinear Analysis Using Continuum Based Bedisplacements using a Generalized Lagrangian approach. This leads to the expression of the tangent matrix in a straight forward manner and an example of application for 2D elasticity is presented. For large displacements/large rotations beam/shell problems the incremental equations are derived using

有恶意 发表于 2025-3-22 08:53:24

Fundamentals of Numerical Algorithms for Static and Dynamic Instability Phenomena of Thin Shellsnlinear principle of virtual work is transformed into its incremental subprinciple and finally discretized. The resulting equation for Kelvin-Voigt-material, usually denoted as tangential equation of motion, turns out to be a sufficient and suitable basis for the numerical evaluation of arbitrary no

男生戴手铐 发表于 2025-3-22 15:09:30

Numerical Aspects of Shell Stability Analysishis paper focuses on some particular points of this approach. There are cases, however, mode jumping for example, where the methods of statics do not longer suffice and where it becomes necessary to combine the methods of statics with procedures for the integration of the equations of motion. The la

男生戴手铐 发表于 2025-3-22 20:15:46

http://reply.papertrans.cn/24/2327/232676/232676_7.png

愤愤不平 发表于 2025-3-22 22:58:06

http://reply.papertrans.cn/24/2327/232676/232676_8.png

有抱负者 发表于 2025-3-23 02:42:50

http://reply.papertrans.cn/24/2327/232676/232676_9.png

HUMID 发表于 2025-3-23 07:56:31

http://reply.papertrans.cn/24/2327/232676/232676_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Computational Mechanics of Nonlinear Response of Shells; Wilfried B. Krätzig,Eugenio Oñate Book 1990 Springer-Verlag Berlin Heidelberg 199