chastise 发表于 2025-3-23 13:08:41

http://reply.papertrans.cn/24/2326/232577/232577_11.png

辫子带来帮助 发表于 2025-3-23 15:18:52

http://reply.papertrans.cn/24/2326/232577/232577_12.png

finite 发表于 2025-3-23 20:49:43

http://reply.papertrans.cn/24/2326/232577/232577_13.png

Commonwealth 发表于 2025-3-23 23:32:56

Second-Order-Faktorenanalyse (SFA)nits, it is NP-hard to find such a network that makes mistakes on a proportion smaller than .. of the examples, for some constant .. We prove a similar result for the problem of approximately minimizing the quadratic loss of a two-layer network with a sigmoid output unit.

极微小 发表于 2025-3-24 04:53:19

http://reply.papertrans.cn/24/2326/232577/232577_15.png

包庇 发表于 2025-3-24 08:10:59

http://reply.papertrans.cn/24/2326/232577/232577_16.png

同步左右 发表于 2025-3-24 11:28:11

http://reply.papertrans.cn/24/2326/232577/232577_17.png

军火 发表于 2025-3-24 16:49:53

http://reply.papertrans.cn/24/2326/232577/232577_18.png

Anticoagulants 发表于 2025-3-24 19:05:26

http://reply.papertrans.cn/24/2326/232577/232577_19.png

创作 发表于 2025-3-25 00:51:14

Regularized Principal Manifoldsapproach. 2) We derive uniform convergence bounds and hence bounds on the learning rates of the algorithm. In particular, we give good bounds on the covering numbers which allows us to obtain a nearly optimal learning rate of order . for certain types of regularization operators, where . is the sample size and α an arbitrary positive constant.
页: 1 [2] 3 4 5 6 7
查看完整版本: Titlebook: Computational Learning Theory; 4th European Confere Paul Fischer,Hans Ulrich Simon Conference proceedings 1999 Springer-Verlag Berlin Heide