chastise 发表于 2025-3-23 13:08:41
http://reply.papertrans.cn/24/2326/232577/232577_11.png辫子带来帮助 发表于 2025-3-23 15:18:52
http://reply.papertrans.cn/24/2326/232577/232577_12.pngfinite 发表于 2025-3-23 20:49:43
http://reply.papertrans.cn/24/2326/232577/232577_13.pngCommonwealth 发表于 2025-3-23 23:32:56
Second-Order-Faktorenanalyse (SFA)nits, it is NP-hard to find such a network that makes mistakes on a proportion smaller than .. of the examples, for some constant .. We prove a similar result for the problem of approximately minimizing the quadratic loss of a two-layer network with a sigmoid output unit.极微小 发表于 2025-3-24 04:53:19
http://reply.papertrans.cn/24/2326/232577/232577_15.png包庇 发表于 2025-3-24 08:10:59
http://reply.papertrans.cn/24/2326/232577/232577_16.png同步左右 发表于 2025-3-24 11:28:11
http://reply.papertrans.cn/24/2326/232577/232577_17.png军火 发表于 2025-3-24 16:49:53
http://reply.papertrans.cn/24/2326/232577/232577_18.pngAnticoagulants 发表于 2025-3-24 19:05:26
http://reply.papertrans.cn/24/2326/232577/232577_19.png创作 发表于 2025-3-25 00:51:14
Regularized Principal Manifoldsapproach. 2) We derive uniform convergence bounds and hence bounds on the learning rates of the algorithm. In particular, we give good bounds on the covering numbers which allows us to obtain a nearly optimal learning rate of order . for certain types of regularization operators, where . is the sample size and α an arbitrary positive constant.