爆裂 发表于 2025-3-21 16:57:49
书目名称Computational Intelligence and Mathematics for Tackling Complex Problems 3影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0232433<br><br> <br><br>书目名称Computational Intelligence and Mathematics for Tackling Complex Problems 3影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0232433<br><br> <br><br>书目名称Computational Intelligence and Mathematics for Tackling Complex Problems 3网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0232433<br><br> <br><br>书目名称Computational Intelligence and Mathematics for Tackling Complex Problems 3网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0232433<br><br> <br><br>书目名称Computational Intelligence and Mathematics for Tackling Complex Problems 3被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0232433<br><br> <br><br>书目名称Computational Intelligence and Mathematics for Tackling Complex Problems 3被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0232433<br><br> <br><br>书目名称Computational Intelligence and Mathematics for Tackling Complex Problems 3年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0232433<br><br> <br><br>书目名称Computational Intelligence and Mathematics for Tackling Complex Problems 3年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0232433<br><br> <br><br>书目名称Computational Intelligence and Mathematics for Tackling Complex Problems 3读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0232433<br><br> <br><br>书目名称Computational Intelligence and Mathematics for Tackling Complex Problems 3读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0232433<br><br> <br><br>安慰 发表于 2025-3-21 23:27:46
§ 5 Delikte gegen die Privatsphärerence scale or interval scale invariant. We illustrate the obtained results applying the introduced transformations to the basic fuzzy integrals. It is shown that only the Choquet integral is invariant with respect to all studied transformations.合乎习俗 发表于 2025-3-22 02:25:59
https://doi.org/10.1007/978-3-642-55833-7memory-based fuzzy cognitive maps have been introduced, which use a sequence of preceding states to determine the next one. In this paper, some dynamical properties of higher-order fuzzy cognitive maps are analyzed. Particularly, the existence and uniqueness of equilibrium points and the stability are discussed.BROW 发表于 2025-3-22 06:27:25
Book 2022 or even the traditional computer science (CS) and and artificial intelligence (AI)..). What is the way out of this dilemma? Advanced methodologies, and tools and techniques, „mimicking” human reasoning or the behavior of animals, animal populations or certain parts of the living bod, based on tradi饶舌的人 发表于 2025-3-22 09:30:13
-Fuzzy Subtopology,fuzzy set theory. Kluwer Academic Publishers, Dordrecht, pp 53–105, 1995, [.]), and propose a new notion of an .-fuzzy subtopology on .. In this contribution, we give an example of one important .-fuzzy subtopology and discuss useful applications.paragon 发表于 2025-3-22 16:03:51
Invariant Aggregation and Pre-aggregation Functions,rence scale or interval scale invariant. We illustrate the obtained results applying the introduced transformations to the basic fuzzy integrals. It is shown that only the Choquet integral is invariant with respect to all studied transformations.paragon 发表于 2025-3-22 18:33:49
Some Dynamical Properties of Higher-Order Fuzzy Cognitive Maps,memory-based fuzzy cognitive maps have been introduced, which use a sequence of preceding states to determine the next one. In this paper, some dynamical properties of higher-order fuzzy cognitive maps are analyzed. Particularly, the existence and uniqueness of equilibrium points and the stability are discussed.控诉 发表于 2025-3-22 22:04:06
http://reply.papertrans.cn/24/2325/232433/232433_8.pngEmmenagogue 发表于 2025-3-23 02:53:14
http://reply.papertrans.cn/24/2325/232433/232433_9.png审问,审讯 发表于 2025-3-23 08:49:45
https://doi.org/10.1007/978-3-642-55833-7mization environment, and a dynamic operational structure that facilitates parallelization of the algorithm. We present a description of the proposed algorithm and its application to a knapsack optimization problem.