Orthosis 发表于 2025-3-21 19:06:44

书目名称Computational Geometry - Methods, Algorithms and Applications影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0232336<br><br>        <br><br>书目名称Computational Geometry - Methods, Algorithms and Applications影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0232336<br><br>        <br><br>书目名称Computational Geometry - Methods, Algorithms and Applications网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0232336<br><br>        <br><br>书目名称Computational Geometry - Methods, Algorithms and Applications网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0232336<br><br>        <br><br>书目名称Computational Geometry - Methods, Algorithms and Applications被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0232336<br><br>        <br><br>书目名称Computational Geometry - Methods, Algorithms and Applications被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0232336<br><br>        <br><br>书目名称Computational Geometry - Methods, Algorithms and Applications年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0232336<br><br>        <br><br>书目名称Computational Geometry - Methods, Algorithms and Applications年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0232336<br><br>        <br><br>书目名称Computational Geometry - Methods, Algorithms and Applications读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0232336<br><br>        <br><br>书目名称Computational Geometry - Methods, Algorithms and Applications读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0232336<br><br>        <br><br>

Hot-Flash 发表于 2025-3-21 21:43:17

http://reply.papertrans.cn/24/2324/232336/232336_2.png

Intractable 发表于 2025-3-22 03:12:44

Sample-Path-Based Policy Iterationing isothetic rectangles. We propose an .(n log .) time algorithm for finding, given a set . of . isothetic rectangles, a pair of isothetic rectangles (.) such that . and . enclose all rectangles of . and area(s) + area(t) is minimal. Moreover we prove an .(n log .) lower bound for the one-dimensional version of the problem.

Laconic 发表于 2025-3-22 05:27:30

https://doi.org/10.1007/978-3-030-48306-7omputing the geodesic diameter and the link diameter for a polygon..We consider the rectilinear case of this problem and give a linear time algorithm to compute the rectilinear link diameter of a simple rectilinear polygon. To our knowledge this is the first optimal algorithm for the diameter problem of non-trivial classes of polygons.

flimsy 发表于 2025-3-22 09:30:18

http://reply.papertrans.cn/24/2324/232336/232336_5.png

高调 发表于 2025-3-22 14:48:08

http://reply.papertrans.cn/24/2324/232336/232336_6.png

高调 发表于 2025-3-22 19:12:45

http://reply.papertrans.cn/24/2324/232336/232336_7.png

节省 发表于 2025-3-22 21:25:43

http://reply.papertrans.cn/24/2324/232336/232336_8.png

compel 发表于 2025-3-23 04:24:27

http://reply.papertrans.cn/24/2324/232336/232336_9.png

gnarled 发表于 2025-3-23 05:48:19

http://reply.papertrans.cn/24/2324/232336/232336_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Computational Geometry - Methods, Algorithms and Applications; International Worksh H. Bieri,H. Noltemeier Conference proceedings 1991 Spri