束以马具
发表于 2025-3-26 22:35:04
Anne Galander,Simon Oertel,Peter WalgenbachMaxwell’s equations can be solved either in the time domain, by evolving an initial condition in time, or in the frequency domain, assuming harmonic . time dependence.
马笼头
发表于 2025-3-27 02:05:54
http://reply.papertrans.cn/24/2323/232259/232259_32.png
减震
发表于 2025-3-27 07:16:56
http://reply.papertrans.cn/24/2323/232259/232259_33.png
dagger
发表于 2025-3-27 13:32:11
http://reply.papertrans.cn/24/2323/232259/232259_34.png
Inscrutable
发表于 2025-3-27 14:33:30
Finite Differences,curl and divergence operators) and derivatives with respect to time. The sought electromagnetic field is a function of space and time that must satisfy Maxwell’s equations. A rather simple way to pursue a numerical solution is to represent the electromagnetic field by its function values at a (finit
有花
发表于 2025-3-27 21:02:36
http://reply.papertrans.cn/24/2323/232259/232259_36.png
桉树
发表于 2025-3-27 23:56:08
http://reply.papertrans.cn/24/2323/232259/232259_37.png
绿州
发表于 2025-3-28 04:10:51
The Method of Moments,hemes and the finite element method. In this chapter, Maxwell’s equations are reformulated as integral equations, where the field solution is expressed in terms of superpostion integrals that involve the sources and a so-called Green’s function. In this setting, we would typically have unknown sourc
调色板
发表于 2025-3-28 09:28:44
http://reply.papertrans.cn/24/2323/232259/232259_39.png
Morose
发表于 2025-3-28 13:31:27
https://doi.org/10.1007/978-3-319-71578-0Bio-polymers; Colloids; Self-assembly; assembling dynamics; designed particles; molecular nanotechnology;