营养品 发表于 2025-3-21 17:10:04

书目名称Computational Continuum Mechanics of Nanoscopic Structures影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0232219<br><br>        <br><br>书目名称Computational Continuum Mechanics of Nanoscopic Structures影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0232219<br><br>        <br><br>书目名称Computational Continuum Mechanics of Nanoscopic Structures网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0232219<br><br>        <br><br>书目名称Computational Continuum Mechanics of Nanoscopic Structures网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0232219<br><br>        <br><br>书目名称Computational Continuum Mechanics of Nanoscopic Structures被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0232219<br><br>        <br><br>书目名称Computational Continuum Mechanics of Nanoscopic Structures被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0232219<br><br>        <br><br>书目名称Computational Continuum Mechanics of Nanoscopic Structures年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0232219<br><br>        <br><br>书目名称Computational Continuum Mechanics of Nanoscopic Structures年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0232219<br><br>        <br><br>书目名称Computational Continuum Mechanics of Nanoscopic Structures读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0232219<br><br>        <br><br>书目名称Computational Continuum Mechanics of Nanoscopic Structures读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0232219<br><br>        <br><br>

很是迷惑 发表于 2025-3-21 22:37:22

http://reply.papertrans.cn/24/2323/232219/232219_2.png

把手 发表于 2025-3-22 04:23:36

https://doi.org/10.1007/BFb0119244decades, the use of nonlocal elasticity theory in mechanical modelling of these structures has seen an inflationary development. According to this highly complex, but mathematically elegant, theory, the state of stress at a given point in a material would be determined not only by the state of strai

饥荒 发表于 2025-3-22 08:19:00

Stereoselective Heterocyclic Synthesisied morphologies. These models are appropriate for describing the behaviour of ultra-small structures, as well as components embedded in nanoscale systems. Furthermore, they can accommodate the discrete nature of nanoscopic structures. The results obtained from the nonlocal models have been successf

催眠 发表于 2025-3-22 11:56:25

Christopher J. Sinz,Scott D. Rychnovskyof the mechanical properties (e.g. elastic constants) and physical dimensions (e.g. effective thickness) of the system in order for the theory to be applied properly. Furthermore, there is no consent among different researchers regarding the choice of the nonlocal parameter. There has been disagreem

CHART 发表于 2025-3-22 16:19:44

https://doi.org/10.1007/978-3-319-04462-0ir geometrical and material properties. Zero-dimensional nanoscopic structures are nano-sized particles with all their three dimensions restricted to a few tens of nanometers. Investigation of these nanoscopic structures has prompted a growing research endeavour in diverse fields including nanolubri

CHART 发表于 2025-3-22 17:47:12

http://reply.papertrans.cn/24/2323/232219/232219_7.png

温和女孩 发表于 2025-3-23 00:01:20

http://reply.papertrans.cn/24/2323/232219/232219_8.png

Medley 发表于 2025-3-23 02:24:13

Enzymemimetic C-C and C-N Bond Formations,vailable for bonding with three other nearest neighbour atoms, forming strong planar .-bonds with them. In graphite, however, this layer is rather very weakly bonded to other layers via vertical .-bonds [.]. The exotic mechanical properties of graphene play a significant role in various applications

Badger 发表于 2025-3-23 07:43:46

Enzymemimetic C-C and C-N Bond Formations,le nanoscopic structure. In this chapter, we will survey the nonlocal continuum-based studies concerned with the mechanical behaviour of more complex nanoscopic structures. There are three main sections in this chapter.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Computational Continuum Mechanics of Nanoscopic Structures; Nonlocal Elasticity Esmaeal Ghavanloo,Hashem Rafii-Tabar,Seyed Ahmad F Book 20