Aphorism 发表于 2025-3-23 11:57:40
http://reply.papertrans.cn/24/2323/232204/232204_11.png心胸开阔 发表于 2025-3-23 17:28:03
,Gröbner Bases,etry. Section 2.6 is entirely devoted to its proof, which also uses some pieces of Gröbner basis theory. It highlights the importance of switching from one groundfield to a field extension, so that the geometric notion of an a.ne variety gets its proper perspective..Once more the chapter closes withGEST 发表于 2025-3-23 20:52:03
http://reply.papertrans.cn/24/2323/232204/232204_13.png减去 发表于 2025-3-23 22:45:19
http://reply.papertrans.cn/24/2323/232204/232204_14.pngforebear 发表于 2025-3-24 03:48:13
http://image.papertrans.cn/c/image/232204.jpg必死 发表于 2025-3-24 07:31:48
Wolfram Lohse,Jörg Laumann,Christian Wolfbook can be completely self-contained, and this one is no exception. In particular, we assume that the reader has some knowledge of basic algebra, but we think that she/he might feel more comfortable if we recall some fundamental definitions. Section 1.1 is specifically designed with this purpose inoxidize 发表于 2025-3-24 12:47:31
http://reply.papertrans.cn/24/2323/232204/232204_17.pnggnarled 发表于 2025-3-24 18:07:40
http://reply.papertrans.cn/24/2323/232204/232204_18.png关心 发表于 2025-3-24 22:30:33
https://doi.org/10.1007/978-3-540-70628-1CoCoA; Groebner bases; Splines; algorithms; commutative algebra; linear algebra; polynomial systems条街道往前推 发表于 2025-3-24 23:50:48
http://reply.papertrans.cn/24/2323/232204/232204_20.png