Aphorism 发表于 2025-3-23 11:57:40

http://reply.papertrans.cn/24/2323/232204/232204_11.png

心胸开阔 发表于 2025-3-23 17:28:03

,Gröbner Bases,etry. Section 2.6 is entirely devoted to its proof, which also uses some pieces of Gröbner basis theory. It highlights the importance of switching from one groundfield to a field extension, so that the geometric notion of an a.ne variety gets its proper perspective..Once more the chapter closes with

GEST 发表于 2025-3-23 20:52:03

http://reply.papertrans.cn/24/2323/232204/232204_13.png

减去 发表于 2025-3-23 22:45:19

http://reply.papertrans.cn/24/2323/232204/232204_14.png

forebear 发表于 2025-3-24 03:48:13

http://image.papertrans.cn/c/image/232204.jpg

必死 发表于 2025-3-24 07:31:48

Wolfram Lohse,Jörg Laumann,Christian Wolfbook can be completely self-contained, and this one is no exception. In particular, we assume that the reader has some knowledge of basic algebra, but we think that she/he might feel more comfortable if we recall some fundamental definitions. Section 1.1 is specifically designed with this purpose in

oxidize 发表于 2025-3-24 12:47:31

http://reply.papertrans.cn/24/2323/232204/232204_17.png

gnarled 发表于 2025-3-24 18:07:40

http://reply.papertrans.cn/24/2323/232204/232204_18.png

关心 发表于 2025-3-24 22:30:33

https://doi.org/10.1007/978-3-540-70628-1CoCoA; Groebner bases; Splines; algorithms; commutative algebra; linear algebra; polynomial systems

条街道往前推 发表于 2025-3-24 23:50:48

http://reply.papertrans.cn/24/2323/232204/232204_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: Computational Commutative Algebra 1; Martin Kreuzer,Lorenzo Robbiano Textbook 2000 Springer-Verlag Berlin Heidelberg 2000 CoCoA.Groebner b