不规则的跳动 发表于 2025-3-30 10:56:14

http://reply.papertrans.cn/24/2321/232087/232087_51.png

咒语 发表于 2025-3-30 16:14:54

http://reply.papertrans.cn/24/2321/232087/232087_52.png

Anonymous 发表于 2025-3-30 17:42:54

http://reply.papertrans.cn/24/2321/232087/232087_53.png

不能约 发表于 2025-3-31 00:46:37

Sorin Adam Matei,Brian C. Britt, where .. (≠1) is even, such that ..(.., .) ∈ ... for all . ≥ 0..The classical generalisation of the Kummer congruence is . It will be shown that this is periodic in the sense that ..(.., .) ≡ ..(.., .) mod ... if . ≡ . mod (. − 1) with . > 0 and . ≡ . mod (. − 1).

出处 发表于 2025-3-31 03:54:08

Short Representation of Quadratic Integers,ynomial time compute norms, signs, products, and inverses of numbers in . and principal ideals generated by numbers in .. We also show how to compare numbers given in compact representation in polynomial time.

Adjourn 发表于 2025-3-31 05:19:24

http://reply.papertrans.cn/24/2321/232087/232087_56.png

取回 发表于 2025-3-31 11:47:31

http://reply.papertrans.cn/24/2321/232087/232087_57.png

Cerumen 发表于 2025-3-31 15:31:56

http://reply.papertrans.cn/24/2321/232087/232087_58.png

HEAVY 发表于 2025-3-31 20:26:22

https://doi.org/10.1007/978-1-349-12448-0 states the results for the case . ≡ 1 mod 4, and gives some numerical examples. The proofs, generalisations to other square-free ., and similar results for the identities of Gauss and Dirichlet, appear elsewhere.

我不明白 发表于 2025-3-31 22:30:26

https://doi.org/10.1007/978-1-349-12448-0e also to .-based approaches to more general quantifier elimination problems. We present a version of the . algorithm which solves the consistency problem for conjunctions of strict inequalities, and which runs faster than the original method applied to this problem.
页: 1 2 3 4 5 [6] 7
查看完整版本: Titlebook: Computational Algebra and Number Theory; Wieb Bosma,Alf Poorten Book 1995 Springer Science+Business Media Dordrecht 1995 Category theory.G