CULT 发表于 2025-3-21 16:42:29
书目名称Complex Networks & Their Applications XII影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0231490<br><br> <br><br>书目名称Complex Networks & Their Applications XII影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0231490<br><br> <br><br>书目名称Complex Networks & Their Applications XII网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0231490<br><br> <br><br>书目名称Complex Networks & Their Applications XII网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0231490<br><br> <br><br>书目名称Complex Networks & Their Applications XII被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0231490<br><br> <br><br>书目名称Complex Networks & Their Applications XII被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0231490<br><br> <br><br>书目名称Complex Networks & Their Applications XII年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0231490<br><br> <br><br>书目名称Complex Networks & Their Applications XII年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0231490<br><br> <br><br>书目名称Complex Networks & Their Applications XII读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0231490<br><br> <br><br>书目名称Complex Networks & Their Applications XII读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0231490<br><br> <br><br>Vasodilation 发表于 2025-3-21 23:54:46
http://reply.papertrans.cn/24/2315/231490/231490_2.pngacetylcholine 发表于 2025-3-22 03:59:17
http://reply.papertrans.cn/24/2315/231490/231490_3.pngCulpable 发表于 2025-3-22 06:36:57
978-3-031-53470-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerlfabricate 发表于 2025-3-22 09:22:27
http://reply.papertrans.cn/24/2315/231490/231490_5.pngDefault 发表于 2025-3-22 16:33:56
http://reply.papertrans.cn/24/2315/231490/231490_6.pngDefault 发表于 2025-3-22 17:37:49
https://doi.org/10.1007/978-3-322-94647-8ex relational data. Large real-world graphs, characterised by sparsity in relations and features, necessitate dedicated tools that existing dense tensor-centred approaches cannot easily provide. To address this need, we introduce a GNNs module in Scikit-network, a Python package for graph analysis,能量守恒 发表于 2025-3-23 00:34:59
https://doi.org/10.1007/978-3-658-16596-3in its early stages. In our research, we repurpose GNN Graph Classification, traditionally rooted in disciplines like biology and chemistry, to delve into the intricacies of time series datasets. We demonstrate how graphs are constructed within individual time series and across multiple datasets, hiESPY 发表于 2025-3-23 04:26:57
http://reply.papertrans.cn/24/2315/231490/231490_9.pngGEAR 发表于 2025-3-23 09:27:25
https://doi.org/10.1007/978-3-658-12285-0such as their .. However, if this were true, modifying only the training procedure for a given architecture would not likely to enhance performance. Contrary to this belief, our paper demonstrates several ways to achieve such improvements. We begin by highlighting the training challenges of GCNs fro