匍匐 发表于 2025-3-23 13:32:18
http://reply.papertrans.cn/24/2315/231468/231468_11.pngeucalyptus 发表于 2025-3-23 15:51:36
Complex Manifolds without Potential Theory978-1-4684-9344-3Series ISSN 0172-5939 Series E-ISSN 2191-6675optional 发表于 2025-3-23 21:16:15
http://reply.papertrans.cn/24/2315/231468/231468_13.pngPalatial 发表于 2025-3-24 02:07:50
http://reply.papertrans.cn/24/2315/231468/231468_14.png牲畜栏 发表于 2025-3-24 04:17:15
https://doi.org/10.1007/978-3-319-30058-0Let M be a C. manifold of dimension n. To a point x ∈ M we will denote by T. and T. the tangent and cotangent spaces respectively. An . on M is a C. field of endomorphisms J.: T. → T., such that J. = −1., where 1. denotes the identity endomorphism in T..发源 发表于 2025-3-24 09:05:44
Imagination – die Kraft innerer BilderSheaf theory is a basic tool in the study of complex manifolds. We will review its main ideas and the cohomology theory built on it. For details cf. or .食物 发表于 2025-3-24 14:34:41
http://reply.papertrans.cn/24/2315/231468/231468_17.pngPalpitation 发表于 2025-3-24 18:47:08
Stabilisierung in der TraumabehandlungLet M be a complex manifold of dimension m. M is called . if an hermitian structure H is given in its tangent bundle T(M). With the local coordinates z.,…, z. a natural frame field is given by . and this frame is holomorphic. Let . Then the matrix . is positive definite hermitian.Senescent 发表于 2025-3-24 21:32:36
http://reply.papertrans.cn/24/2315/231468/231468_19.pngosteopath 发表于 2025-3-25 02:22:19
http://reply.papertrans.cn/24/2315/231468/231468_20.png