匍匐 发表于 2025-3-23 13:32:18

http://reply.papertrans.cn/24/2315/231468/231468_11.png

eucalyptus 发表于 2025-3-23 15:51:36

Complex Manifolds without Potential Theory978-1-4684-9344-3Series ISSN 0172-5939 Series E-ISSN 2191-6675

optional 发表于 2025-3-23 21:16:15

http://reply.papertrans.cn/24/2315/231468/231468_13.png

Palatial 发表于 2025-3-24 02:07:50

http://reply.papertrans.cn/24/2315/231468/231468_14.png

牲畜栏 发表于 2025-3-24 04:17:15

https://doi.org/10.1007/978-3-319-30058-0Let M be a C. manifold of dimension n. To a point x ∈ M we will denote by T. and T. the tangent and cotangent spaces respectively. An . on M is a C. field of endomorphisms J.: T. → T., such that J. = −1., where 1. denotes the identity endomorphism in T..

发源 发表于 2025-3-24 09:05:44

Imagination – die Kraft innerer BilderSheaf theory is a basic tool in the study of complex manifolds. We will review its main ideas and the cohomology theory built on it. For details cf. or .

食物 发表于 2025-3-24 14:34:41

http://reply.papertrans.cn/24/2315/231468/231468_17.png

Palpitation 发表于 2025-3-24 18:47:08

Stabilisierung in der TraumabehandlungLet M be a complex manifold of dimension m. M is called . if an hermitian structure H is given in its tangent bundle T(M). With the local coordinates z.,…, z. a natural frame field is given by . and this frame is holomorphic. Let . Then the matrix . is positive definite hermitian.

Senescent 发表于 2025-3-24 21:32:36

http://reply.papertrans.cn/24/2315/231468/231468_19.png

osteopath 发表于 2025-3-25 02:22:19

http://reply.papertrans.cn/24/2315/231468/231468_20.png
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Complex Manifolds without Potential Theory; with an appendix on Shiing-shen Chern Textbook 1979Latest edition S.-s. Chern 1979 Manifolds.P