宣称 发表于 2025-3-23 11:45:18

http://reply.papertrans.cn/24/2315/231414/231414_11.png

聚集 发表于 2025-3-23 15:46:47

http://reply.papertrans.cn/24/2315/231414/231414_12.png

减少 发表于 2025-3-23 18:05:47

0743-1643 st comprehensive account of the theory, as well as its appli.A set in complex Euclidean space is called .C.-convex if all its intersections with complex lines are contractible, and it is said to be linearly convex if its complement is a union of complex hyperplanes. These notions are intermediates b

考古学 发表于 2025-3-24 02:01:26

http://reply.papertrans.cn/24/2315/231414/231414_14.png

allergen 发表于 2025-3-24 02:50:17

http://reply.papertrans.cn/24/2315/231414/231414_15.png

Microaneurysm 发表于 2025-3-24 09:28:09

http://reply.papertrans.cn/24/2315/231414/231414_16.png

Itinerant 发表于 2025-3-24 12:03:28

http://reply.papertrans.cn/24/2315/231414/231414_17.png

Indurate 发表于 2025-3-24 14:59:36

Analytic Solutions to Partial Differential Equations,n 4.2 we study conditions for surjectivity of an operator .(∂). We introduce the concept of .-convexity for carriers and prove that a polynomially convex domain . is .-convex for carriers if and only of if .(∂) is surjective on .. For operators of the type 〈., ∂〉 we give a necessary and sufficient c

SHRIK 发表于 2025-3-24 19:57:20

http://reply.papertrans.cn/24/2315/231414/231414_19.png

娴熟 发表于 2025-3-25 01:05:11

Zhenzhou Tian,Binhui Tian,Jiajun Lvn 4.2 we study conditions for surjectivity of an operator .(∂). We introduce the concept of .-convexity for carriers and prove that a polynomially convex domain . is .-convex for carriers if and only of if .(∂) is surjective on .. For operators of the type 〈., ∂〉 we give a necessary and sufficient c
页: 1 [2] 3 4
查看完整版本: Titlebook: Complex Convexity and Analytic Functionals; Mats Andersson,Ragnar Sigurdsson,Mikael Passare Book 2004 Springer Basel AG 2004 Pseudoconvexi