Julienne
发表于 2025-3-21 19:10:01
书目名称Complex Analysis and Special Topics in Harmonic Analysis影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0231377<br><br> <br><br>书目名称Complex Analysis and Special Topics in Harmonic Analysis影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0231377<br><br> <br><br>书目名称Complex Analysis and Special Topics in Harmonic Analysis网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0231377<br><br> <br><br>书目名称Complex Analysis and Special Topics in Harmonic Analysis网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0231377<br><br> <br><br>书目名称Complex Analysis and Special Topics in Harmonic Analysis被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0231377<br><br> <br><br>书目名称Complex Analysis and Special Topics in Harmonic Analysis被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0231377<br><br> <br><br>书目名称Complex Analysis and Special Topics in Harmonic Analysis年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0231377<br><br> <br><br>书目名称Complex Analysis and Special Topics in Harmonic Analysis年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0231377<br><br> <br><br>书目名称Complex Analysis and Special Topics in Harmonic Analysis读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0231377<br><br> <br><br>书目名称Complex Analysis and Special Topics in Harmonic Analysis读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0231377<br><br> <br><br>
LIMN
发表于 2025-3-21 20:34:45
Spracherwerb in der Interaktion,here the frequencies . are purely imaginary, i.e., . = .λ., λ .then . is the Fourier transform of a distribution .∈.(ℝ). That is, we let.with . the Dirac mass at the point λ.∈ℝ (acting on .∞ functions in ℝ and
不规则的跳动
发表于 2025-3-22 02:12:37
Exponential Polynomials,here the frequencies . are purely imaginary, i.e., . = .λ., λ .then . is the Fourier transform of a distribution .∈.(ℝ). That is, we let.with . the Dirac mass at the point λ.∈ℝ (acting on .∞ functions in ℝ and
GENUS
发表于 2025-3-22 05:41:29
http://reply.papertrans.cn/24/2314/231377/231377_4.png
beta-cells
发表于 2025-3-22 12:10:49
http://reply.papertrans.cn/24/2314/231377/231377_5.png
使厌恶
发表于 2025-3-22 16:53:46
http://reply.papertrans.cn/24/2314/231377/231377_6.png
使厌恶
发表于 2025-3-22 19:14:24
http://reply.papertrans.cn/24/2314/231377/231377_7.png
被告
发表于 2025-3-22 21:44:03
http://reply.papertrans.cn/24/2314/231377/231377_8.png
Inelasticity
发表于 2025-3-23 04:00:18
Harmonic Analysis,was the work of Fourier on heat conduction that showed, once and for all, the importance and the interest of such expansions, and since then they have been called Fourier expansions. It is clear that another way of saying that a function . is periodic with period τ is to say that . satisfies the convolution equation
inspiration
发表于 2025-3-23 09:20:38
Book 1995e G transform and the unifying role it plays in complex analysis and transcendental number theory; summation methods; and the theorem of L. Schwarz concerning the solutions of a homogeneous convolution equation on the real line and its applications in harmonic function theory.