deteriorate 发表于 2025-3-21 17:59:35
书目名称Complex Analysis I影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0231364<br><br> <br><br>书目名称Complex Analysis I影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0231364<br><br> <br><br>书目名称Complex Analysis I网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0231364<br><br> <br><br>书目名称Complex Analysis I网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0231364<br><br> <br><br>书目名称Complex Analysis I被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0231364<br><br> <br><br>书目名称Complex Analysis I被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0231364<br><br> <br><br>书目名称Complex Analysis I年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0231364<br><br> <br><br>书目名称Complex Analysis I年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0231364<br><br> <br><br>书目名称Complex Analysis I读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0231364<br><br> <br><br>书目名称Complex Analysis I读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0231364<br><br> <br><br>凶兆 发表于 2025-3-21 22:40:50
0075-8434 evelopments has been to bridge the gap existing between the theory of functions of one and of several complex variables. The Special Year in Complex Analysis at the University of Maryland, and these proceedings, were conceived as a forum where these new developments could be presented and where spec无底 发表于 2025-3-22 03:57:25
Conference proceedings 1987are Nevanlinna theory in one and several variables, interpolation problems in Cn, estimations and integral representations of the solutions of the Cauchy-Riemann equations, the complex Monge-Ampère equation, geometric problems in complex analysis in Cn, applications of complex analysis to harmonic analysis, partial differential equations.Respond 发表于 2025-3-22 06:58:38
http://reply.papertrans.cn/24/2314/231364/231364_4.pngmultiply 发表于 2025-3-22 11:07:41
Complex Analysis I978-3-540-47899-7Series ISSN 0075-8434 Series E-ISSN 1617-9692Inkling 发表于 2025-3-22 14:17:31
Philipp Brüggemann,Carsten D. Schultzoof does not contain any integration. The main tool is the theorem of Bazilevič ..In the following we prove a stronger version of an important theorem of Hayman on the growth of univalent functions..Our proof is along Milin‘s approach. We also bring as an application a short proof of Hayman‘s regularity theorem stating thatInkling 发表于 2025-3-22 19:24:05
https://doi.org/10.1007/BFb0078339Chern class; Complex analysis; Derivative; Meromorphic function; Nevanlinna theory; Riemann surfaces; calcFID 发表于 2025-3-22 21:42:54
978-3-540-18356-3Springer-Verlag Berlin Heidelberg 1987negligence 发表于 2025-3-23 02:41:11
http://reply.papertrans.cn/24/2314/231364/231364_9.png先兆 发表于 2025-3-23 09:32:26
http://reply.papertrans.cn/24/2314/231364/231364_10.png