夹子 发表于 2025-3-21 16:15:48
书目名称Compactifying Moduli Spaces for Abelian Varieties影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0230809<br><br> <br><br>书目名称Compactifying Moduli Spaces for Abelian Varieties影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0230809<br><br> <br><br>书目名称Compactifying Moduli Spaces for Abelian Varieties网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0230809<br><br> <br><br>书目名称Compactifying Moduli Spaces for Abelian Varieties网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0230809<br><br> <br><br>书目名称Compactifying Moduli Spaces for Abelian Varieties被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0230809<br><br> <br><br>书目名称Compactifying Moduli Spaces for Abelian Varieties被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0230809<br><br> <br><br>书目名称Compactifying Moduli Spaces for Abelian Varieties年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0230809<br><br> <br><br>书目名称Compactifying Moduli Spaces for Abelian Varieties年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0230809<br><br> <br><br>书目名称Compactifying Moduli Spaces for Abelian Varieties读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0230809<br><br> <br><br>书目名称Compactifying Moduli Spaces for Abelian Varieties读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0230809<br><br> <br><br>goodwill 发表于 2025-3-21 22:06:28
http://reply.papertrans.cn/24/2309/230809/230809_2.png集合 发表于 2025-3-22 02:35:13
Moduli of Principally Polarized Abelian Varieties,subsumed by the results of chapter 5, but we treat this case first as it is technically simpler and essentially follows the outline of the preceding chapter (and in particular at various points we make use of results of Alexeev).Amorous 发表于 2025-3-22 05:32:09
http://reply.papertrans.cn/24/2309/230809/230809_4.pngCHAR 发表于 2025-3-22 09:15:35
http://reply.papertrans.cn/24/2309/230809/230809_5.png哪有黄油 发表于 2025-3-22 15:32:11
http://reply.papertrans.cn/24/2309/230809/230809_6.png哪有黄油 发表于 2025-3-22 20:18:38
https://doi.org/10.1007/978-3-531-90281-4r for proofs of many of the results stated here) see the book of Laumon and Moret-Bailly and Vistoli’s paper ..Throughout this chapter we work over a fixed a base scheme ., and consider the étale topology on the category (Sch.) of schemes over ., unless otherwise mentioned.全国性 发表于 2025-3-22 22:55:53
http://reply.papertrans.cn/24/2309/230809/230809_8.png忍耐 发表于 2025-3-23 03:05:43
http://reply.papertrans.cn/24/2309/230809/230809_9.png固定某物 发表于 2025-3-23 08:51:05
Rainer Geißler,Sonja Weber-Mengesure. We present two approaches. The first is based on the theory of logarithmic étale cohomology. The second approach is more in the spirit of Deligne-Rapoport’s construction of compact moduli stacks for elliptic curves with level structure, and is based on our discussion of theta groups in chapter