Intrepid 发表于 2025-3-23 13:12:52

http://reply.papertrans.cn/24/2309/230806/230806_11.png

DIS 发表于 2025-3-23 16:43:41

Soziale Krankenhausfürsorge in Deutschlandr the Laplace—Beltrami operator on a symmetric space of non-compact type. He restricted his attention to the space SL(.,C)/SU(.). This space is especially amenable to a study of the Martin compactification because one has an explicit formula for the Green function Gx that is a consequence of a remar

残暴 发表于 2025-3-23 19:46:46

http://reply.papertrans.cn/24/2309/230806/230806_13.png

空气传播 发表于 2025-3-23 23:50:55

Norbert Spangenberg,Manfred Clemenzso-called Poisson formula (see Theorem 12.10) for the integral representation of the bounded harmonic functions, i.e., solutions of the equation . = 0 . This was proved earlier (see Corollary 8.29), using the Martin boundary of . for λ = 0. The key to the proof, presented here, is the fact that

ULCER 发表于 2025-3-24 03:44:51

http://reply.papertrans.cn/24/2309/230806/230806_15.png

非实体 发表于 2025-3-24 08:36:16

http://reply.papertrans.cn/24/2309/230806/230806_16.png

Deadpan 发表于 2025-3-24 12:48:28

http://reply.papertrans.cn/24/2309/230806/230806_17.png

华而不实 发表于 2025-3-24 18:25:39

http://reply.papertrans.cn/24/2309/230806/230806_18.png

PANEL 发表于 2025-3-24 19:05:19

http://reply.papertrans.cn/24/2309/230806/230806_19.png

绅士 发表于 2025-3-25 00:20:32

http://reply.papertrans.cn/24/2309/230806/230806_20.png
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Compactifications of Symmetric Spaces; Yves Guivarc’h,Lizhen Ji,J. C. Taylor Book 1998 Birkhäuser Boston 1998 Algebra.Compactification.Fin