伪造者 发表于 2025-3-23 11:43:19
Harvesting Health in the GardenLet . be the unit disk in ℂ. Rearranging the basis of L.(.), L. Peng, R. Rochberg and Z. Wu proved that the space L.(.) can be decomposed onto a direct sum of the Bergman type spaces .where拱墙 发表于 2025-3-23 16:36:29
http://reply.papertrans.cn/24/2308/230757/230757_12.png周兴旺 发表于 2025-3-23 19:56:12
http://reply.papertrans.cn/24/2308/230757/230757_13.pngOrdeal 发表于 2025-3-23 23:01:58
https://doi.org/10.1007/978-3-0348-5280-7In this chapter we return to the upper half-plane Π, the space .(Π) and its Bergman subspace A.(Π). Passing to polar coordinates we have . andDNR215 发表于 2025-3-24 05:34:39
http://reply.papertrans.cn/24/2308/230757/230757_15.png歪曲道理 发表于 2025-3-24 10:24:33
http://reply.papertrans.cn/24/2308/230757/230757_16.pngIRK 发表于 2025-3-24 10:49:16
http://reply.papertrans.cn/24/2308/230757/230757_17.pngWernickes-area 发表于 2025-3-24 17:24:12
Bergman and Poly-Bergman Spaces,We start by recalling an old and well-known result. Let . be the Hardy space on the upper half-plane II in ℂ, which by definition consists of all functions ϕ on ℝ admitting analytic continuation in II and satisfying the condition . Let . be the (orthogonal) Szegö projection of .(ℝ) onto .. Then: .EXALT 发表于 2025-3-24 21:34:34
http://reply.papertrans.cn/24/2308/230757/230757_19.pngfructose 发表于 2025-3-25 02:34:40
http://reply.papertrans.cn/24/2308/230757/230757_20.png