俗艳 发表于 2025-3-23 12:12:31
https://doi.org/10.1057/9780230599260s also true in case the space H is finite-dimensional. For if, say, D≧0, its eigenvalues are non-negative while their sum is the trace of ., which is 0. Hence all eigenvalues are 0 and so .=0. In the infinite-dimensional case however it is possible that an operator be semi-normal without being norma索赔 发表于 2025-3-23 16:41:07
Andropov and the Intensification of Labour,nics, . and . correspond to the unperturbed and total Hamiltonian respectively and . transforms the state at time . (interaction picture) into that at time . = 0 (Heisenberg picture); see, e.g., Friedrichs , Jauch and Jauch and Zinnes .范例 发表于 2025-3-23 21:23:20
https://doi.org/10.1007/978-3-642-85938-0Hilbert space; Hilbertscher Raum; Jacobi; Operators; commutation; differential operator; equation; form; int安装 发表于 2025-3-24 01:40:30
978-3-642-85940-3Springer-Verlag, Berlin · Heidelberg 1967Expertise 发表于 2025-3-24 03:35:43
http://reply.papertrans.cn/24/2308/230745/230745_15.png可以任性 发表于 2025-3-24 07:02:44
http://reply.papertrans.cn/24/2308/230745/230745_16.png空气 发表于 2025-3-24 12:19:31
http://reply.papertrans.cn/24/2308/230745/230745_17.png变异 发表于 2025-3-24 17:36:15
http://reply.papertrans.cn/24/2308/230745/230745_18.pngPicks-Disease 发表于 2025-3-24 20:02:54
http://reply.papertrans.cn/24/2308/230745/230745_19.pngBetween 发表于 2025-3-25 02:12:12
http://reply.papertrans.cn/24/2308/230745/230745_20.png