多话 发表于 2025-3-21 17:01:44

书目名称Combinatorics, Computability and Logic影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0230060<br><br>        <br><br>书目名称Combinatorics, Computability and Logic影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0230060<br><br>        <br><br>书目名称Combinatorics, Computability and Logic网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0230060<br><br>        <br><br>书目名称Combinatorics, Computability and Logic网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0230060<br><br>        <br><br>书目名称Combinatorics, Computability and Logic被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0230060<br><br>        <br><br>书目名称Combinatorics, Computability and Logic被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0230060<br><br>        <br><br>书目名称Combinatorics, Computability and Logic年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0230060<br><br>        <br><br>书目名称Combinatorics, Computability and Logic年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0230060<br><br>        <br><br>书目名称Combinatorics, Computability and Logic读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0230060<br><br>        <br><br>书目名称Combinatorics, Computability and Logic读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0230060<br><br>        <br><br>

失眠症 发表于 2025-3-21 22:49:26

http://reply.papertrans.cn/24/2301/230060/230060_2.png

金丝雀 发表于 2025-3-22 01:45:35

Some Results for Some Conjectures in Addition Chainsopose a special class of addition chain called ., we conjecture that it is equivalent to .. -. and we prove that this conjecture is true for integers . ≤ 8 × 10.. Also, we prove that the Scholz and Aiello-Subbarao conjectures are true for integers . ≤ 8 × 10..

接合 发表于 2025-3-22 06:26:37

http://reply.papertrans.cn/24/2301/230060/230060_4.png

Hormones 发表于 2025-3-22 11:49:03

http://reply.papertrans.cn/24/2301/230060/230060_5.png

碎石 发表于 2025-3-22 16:50:01

https://doi.org/10.1007/978-1-4614-6409-9. → ∞..As a consequence, it is deduced that for each fixed . ≥ 1 and . ≥ 2, almost every .-connected (resp. .-strongly connected) graph or digraph with diameter . or . +1 has diameter exactly ...Some open problems and conjectures are proposed.

碎石 发表于 2025-3-22 18:50:15

http://reply.papertrans.cn/24/2301/230060/230060_7.png

Mingle 发表于 2025-3-22 22:13:31

Architecture and Implementationto their question proving that if . a unicycle bipartite graph, then all maximum matchings of . are uniquely restricted if and only if there is an edge e belonging to the cycle such that no maximum matching of . contains ..

Hemoptysis 发表于 2025-3-23 02:12:44

Iryna Gurevych,Robert Porzel,Rainer Malakaniversal self delimiting machine halts. The algorithmic complexity of . is strictly greater than that of ., but similar to the algorithmic complexity of ., the halting probability of an oracle machine. What makes . interesting is that it is an example of a highly random number definable without considering oracles.

变化 发表于 2025-3-23 06:05:50

http://reply.papertrans.cn/24/2301/230060/230060_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Combinatorics, Computability and Logic; Proceedings of the T C. S. Calude,M. J. Dinneen,S. Sburlan Conference proceedings 2001 Springer-Ver