美丽动人 发表于 2025-3-21 19:41:23

书目名称Combinatorics and Commutative Algebra影响因子(影响力)<br>        http://impactfactor.cn/2024/if/?ISSN=BK0230040<br><br>        <br><br>书目名称Combinatorics and Commutative Algebra影响因子(影响力)学科排名<br>        http://impactfactor.cn/2024/ifr/?ISSN=BK0230040<br><br>        <br><br>书目名称Combinatorics and Commutative Algebra网络公开度<br>        http://impactfactor.cn/2024/at/?ISSN=BK0230040<br><br>        <br><br>书目名称Combinatorics and Commutative Algebra网络公开度学科排名<br>        http://impactfactor.cn/2024/atr/?ISSN=BK0230040<br><br>        <br><br>书目名称Combinatorics and Commutative Algebra被引频次<br>        http://impactfactor.cn/2024/tc/?ISSN=BK0230040<br><br>        <br><br>书目名称Combinatorics and Commutative Algebra被引频次学科排名<br>        http://impactfactor.cn/2024/tcr/?ISSN=BK0230040<br><br>        <br><br>书目名称Combinatorics and Commutative Algebra年度引用<br>        http://impactfactor.cn/2024/ii/?ISSN=BK0230040<br><br>        <br><br>书目名称Combinatorics and Commutative Algebra年度引用学科排名<br>        http://impactfactor.cn/2024/iir/?ISSN=BK0230040<br><br>        <br><br>书目名称Combinatorics and Commutative Algebra读者反馈<br>        http://impactfactor.cn/2024/5y/?ISSN=BK0230040<br><br>        <br><br>书目名称Combinatorics and Commutative Algebra读者反馈学科排名<br>        http://impactfactor.cn/2024/5yr/?ISSN=BK0230040<br><br>        <br><br>

predict 发表于 2025-3-21 20:21:35

Nonnegative Integral Solutions to Linear Equations,ich goes back to MacMahon. Let .(.) := number of . × . ℕ-matrices having line sums ., where a line is a row or column, and an ℕ-matrix is a matrix whose entries belong to ℕ. Such a matrix is called an . or .. Keeping . fixed, one finds that .(0) = 1, .(1) = .!, and Anand, Dumir and Gupta showed

ingrate 发表于 2025-3-22 03:11:45

Nonnegative Integral Solutions to Linear Equations,that . See also Stanley . Keeping . fixed, one finds that .(.) 1,.(.) = . + 1, and MacMahon showed that . Guided by this evidence Anand, Dumir and Gupta formulated the following

欢腾 发表于 2025-3-22 05:19:50

http://reply.papertrans.cn/24/2301/230040/230040_4.png

MIME 发表于 2025-3-22 10:24:22

Textbook 1996Latest editionackground information in algebra, combinatorics and topology broadens access to this material for non-specialists...New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors..

猛烈责骂 发表于 2025-3-22 13:54:11

http://reply.papertrans.cn/24/2301/230040/230040_6.png

猛烈责骂 发表于 2025-3-22 20:25:16

Realizing End-to-End Supply Chain Finance,that . See also Stanley . Keeping . fixed, one finds that .(.) 1,.(.) = . + 1, and MacMahon showed that . Guided by this evidence Anand, Dumir and Gupta formulated the following

SHRIK 发表于 2025-3-23 00:20:42

http://reply.papertrans.cn/24/2301/230040/230040_8.png

gerontocracy 发表于 2025-3-23 02:27:39

978-0-8176-4369-0Birkhäuser Boston 1996

玷污 发表于 2025-3-23 05:57:28

Richard P. StanleyStanley represents a broad perspective with respect to two significant topics from Combinatorial Commutative Algebra.The theory of invariants of a torus acting linearly on a polynomial ring.The face r
页: [1] 2 3 4
查看完整版本: Titlebook: Combinatorics and Commutative Algebra; Richard P. Stanley Textbook 1996Latest edition Birkhäuser Boston 1996 Combinatorics.cls.commutative