美丽动人
发表于 2025-3-21 19:41:23
书目名称Combinatorics and Commutative Algebra影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0230040<br><br> <br><br>书目名称Combinatorics and Commutative Algebra影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0230040<br><br> <br><br>书目名称Combinatorics and Commutative Algebra网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0230040<br><br> <br><br>书目名称Combinatorics and Commutative Algebra网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0230040<br><br> <br><br>书目名称Combinatorics and Commutative Algebra被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0230040<br><br> <br><br>书目名称Combinatorics and Commutative Algebra被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0230040<br><br> <br><br>书目名称Combinatorics and Commutative Algebra年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0230040<br><br> <br><br>书目名称Combinatorics and Commutative Algebra年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0230040<br><br> <br><br>书目名称Combinatorics and Commutative Algebra读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0230040<br><br> <br><br>书目名称Combinatorics and Commutative Algebra读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0230040<br><br> <br><br>
predict
发表于 2025-3-21 20:21:35
Nonnegative Integral Solutions to Linear Equations,ich goes back to MacMahon. Let .(.) := number of . × . ℕ-matrices having line sums ., where a line is a row or column, and an ℕ-matrix is a matrix whose entries belong to ℕ. Such a matrix is called an . or .. Keeping . fixed, one finds that .(0) = 1, .(1) = .!, and Anand, Dumir and Gupta showed
ingrate
发表于 2025-3-22 03:11:45
Nonnegative Integral Solutions to Linear Equations,that . See also Stanley . Keeping . fixed, one finds that .(.) 1,.(.) = . + 1, and MacMahon showed that . Guided by this evidence Anand, Dumir and Gupta formulated the following
欢腾
发表于 2025-3-22 05:19:50
http://reply.papertrans.cn/24/2301/230040/230040_4.png
MIME
发表于 2025-3-22 10:24:22
Textbook 1996Latest editionackground information in algebra, combinatorics and topology broadens access to this material for non-specialists...New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors..
猛烈责骂
发表于 2025-3-22 13:54:11
http://reply.papertrans.cn/24/2301/230040/230040_6.png
猛烈责骂
发表于 2025-3-22 20:25:16
Realizing End-to-End Supply Chain Finance,that . See also Stanley . Keeping . fixed, one finds that .(.) 1,.(.) = . + 1, and MacMahon showed that . Guided by this evidence Anand, Dumir and Gupta formulated the following
SHRIK
发表于 2025-3-23 00:20:42
http://reply.papertrans.cn/24/2301/230040/230040_8.png
gerontocracy
发表于 2025-3-23 02:27:39
978-0-8176-4369-0Birkhäuser Boston 1996
玷污
发表于 2025-3-23 05:57:28
Richard P. StanleyStanley represents a broad perspective with respect to two significant topics from Combinatorial Commutative Algebra.The theory of invariants of a torus acting linearly on a polynomial ring.The face r