威风
发表于 2025-3-21 19:00:32
书目名称Combinatorial and Geometric Group Theory影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0230034<br><br> <br><br>书目名称Combinatorial and Geometric Group Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0230034<br><br> <br><br>书目名称Combinatorial and Geometric Group Theory网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0230034<br><br> <br><br>书目名称Combinatorial and Geometric Group Theory网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0230034<br><br> <br><br>书目名称Combinatorial and Geometric Group Theory被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0230034<br><br> <br><br>书目名称Combinatorial and Geometric Group Theory被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0230034<br><br> <br><br>书目名称Combinatorial and Geometric Group Theory年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0230034<br><br> <br><br>书目名称Combinatorial and Geometric Group Theory年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0230034<br><br> <br><br>书目名称Combinatorial and Geometric Group Theory读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0230034<br><br> <br><br>书目名称Combinatorial and Geometric Group Theory读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0230034<br><br> <br><br>
妈妈不开心
发表于 2025-3-21 21:30:48
http://reply.papertrans.cn/24/2301/230034/230034_2.png
ADORE
发表于 2025-3-22 04:11:10
http://reply.papertrans.cn/24/2301/230034/230034_3.png
syring
发表于 2025-3-22 08:16:43
Solving Random Equations in Garside Groups Using Length Functions,uched in earlier expositions. We then focus on the main ingredient in these attacks: Length functions..After a self-contained introduction to Garside groups, we describe length functions induced by the greedy normal form and by the rational normal form in these groups, and compare their worst-case p
AVANT
发表于 2025-3-22 11:53:18
http://reply.papertrans.cn/24/2301/230034/230034_5.png
Highbrow
发表于 2025-3-22 16:22:47
http://reply.papertrans.cn/24/2301/230034/230034_6.png
Highbrow
发表于 2025-3-22 21:01:37
The ,,-action on the Product of the Two Limit Trees for an Iwip Automorphism, .+(.) × .+(..) of the (non-simplicial) forward limit ℝ-trees for . and .., is properly discontinuous. Alternative proofs, derived from deeper results, have been given by Bestvina-Feighn-Handel [.] and later by Levitt-Lustig [.]; compare also Guirardel [.].
拍下盗公款
发表于 2025-3-22 23:40:02
http://reply.papertrans.cn/24/2301/230034/230034_8.png
出价
发表于 2025-3-23 04:43:30
http://reply.papertrans.cn/24/2301/230034/230034_9.png
panorama
发表于 2025-3-23 07:06:40
http://reply.papertrans.cn/24/2301/230034/230034_10.png