Concave
发表于 2025-3-21 20:07:18
书目名称Combinatorial and Additive Number Theory II影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0230027<br><br> <br><br>书目名称Combinatorial and Additive Number Theory II影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0230027<br><br> <br><br>书目名称Combinatorial and Additive Number Theory II网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0230027<br><br> <br><br>书目名称Combinatorial and Additive Number Theory II网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0230027<br><br> <br><br>书目名称Combinatorial and Additive Number Theory II被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0230027<br><br> <br><br>书目名称Combinatorial and Additive Number Theory II被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0230027<br><br> <br><br>书目名称Combinatorial and Additive Number Theory II年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0230027<br><br> <br><br>书目名称Combinatorial and Additive Number Theory II年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0230027<br><br> <br><br>书目名称Combinatorial and Additive Number Theory II读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0230027<br><br> <br><br>书目名称Combinatorial and Additive Number Theory II读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0230027<br><br> <br><br>
conference
发表于 2025-3-21 20:29:52
http://reply.papertrans.cn/24/2301/230027/230027_2.png
陶器
发表于 2025-3-22 04:07:43
http://reply.papertrans.cn/24/2301/230027/230027_3.png
沉思的鱼
发表于 2025-3-22 04:53:26
http://reply.papertrans.cn/24/2301/230027/230027_4.png
HERE
发表于 2025-3-22 09:01:18
,A Misère-Play ,-Operator,eory 1:443–458, 1965). Here, we extend the operator to the misère-play convention and prove convergence and other properties; notably, more structure is obtained under misère-play as compared with the normal-play convention (Larsson in Theoret. Comput. Sci. 422:52–58, 2012).
AER
发表于 2025-3-22 16:35:54
,Extending Babbage’s (Non-)Primality Tests,factor test. We also prove a partial converse of his non-primality test, based on a single congruence. Along the way we encounter Bachet, Bernoulli, Bézout, Euler, Fermat, Kummer, Lagrange, Lucas, Vandermonde, Waring, Wilson, Wolstenholme, and several contemporary mathematicians.
AER
发表于 2025-3-22 18:29:50
C. L. Moreira,J. A. Peças Lopesmset of ., respectively. Here we review some of what is known and not yet known about the minimum sizes of these three types of sumsets, as well as their corresponding critical numbers. In particular, we discuss several new open direct and inverse problems.
Bereavement
发表于 2025-3-22 22:22:10
http://reply.papertrans.cn/24/2301/230027/230027_8.png
Albumin
发表于 2025-3-23 03:36:02
http://reply.papertrans.cn/24/2301/230027/230027_9.png
superfluous
发表于 2025-3-23 07:01:13
http://reply.papertrans.cn/24/2301/230027/230027_10.png