分期 发表于 2025-3-21 19:33:48
书目名称Combinatorial Optimization影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0229954<br><br> <br><br>书目名称Combinatorial Optimization影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0229954<br><br> <br><br>书目名称Combinatorial Optimization网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0229954<br><br> <br><br>书目名称Combinatorial Optimization网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0229954<br><br> <br><br>书目名称Combinatorial Optimization被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0229954<br><br> <br><br>书目名称Combinatorial Optimization被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0229954<br><br> <br><br>书目名称Combinatorial Optimization年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0229954<br><br> <br><br>书目名称Combinatorial Optimization年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0229954<br><br> <br><br>书目名称Combinatorial Optimization读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0229954<br><br> <br><br>书目名称Combinatorial Optimization读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0229954<br><br> <br><br>Coordinate 发表于 2025-3-21 20:39:19
http://reply.papertrans.cn/23/2300/229954/229954_2.pngCupping 发表于 2025-3-22 03:56:00
Ivan I. Fishchuk,Andrey Kadashchukwe consider two approaches to the problem of minimizing an arbitrary submodular function: one using the ., and one with a combinatorial algorithm. For the important special case of symmetric submodular functions we mention a simpler algorithm in Section 14.5.蜡烛 发表于 2025-3-22 06:45:23
https://doi.org/10.1007/978-1-4939-2547-6mum of the horizontal and the vertical distance. This is often called the ℓ.-distance. (Older machines can only move either horizontally or vertically at a time; in this case the adjusting time is proportional to the ℓ.-distance, the sum of the horizontal and the vertical distance.)抱怨 发表于 2025-3-22 12:08:22
Helmut Sitter,Claudia Draxl,Michael Ramseyinimum capacity .-cut in both cases; see Sections 12.3 and 12.4. This problem, finding a minimum capacity cut .(.) such that |.∩.| is odd for a specified vertex set ., can be solved with network flow techniques.自爱 发表于 2025-3-22 14:05:41
http://reply.papertrans.cn/23/2300/229954/229954_6.png自爱 发表于 2025-3-22 19:41:57
,-Matchings and ,-Joins,inimum capacity .-cut in both cases; see Sections 12.3 and 12.4. This problem, finding a minimum capacity cut .(.) such that |.∩.| is odd for a specified vertex set ., can be solved with network flow techniques.Cryptic 发表于 2025-3-23 00:34:26
0937-5511 supplementary material: .This comprehensive textbook on combinatorial optimization places special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. It has arisen as the basis of several courses on combinatorial optimization and more special topBiomarker 发表于 2025-3-23 01:32:42
Bin Yi,Kristina Larter,Yaguang Xihe edges correspond to the cables. By Theorem 2.4 the minimal connected spanning subgraphs of a given graph are its spanning trees. So we look for a spanning tree of minimum weight, where we say that a subgraph . of a graph . with weights . : .(.) → ℝ has weight .(.(.))=∑..(.).刺耳的声音 发表于 2025-3-23 07:15:44
Spanning Trees and Arborescences,he edges correspond to the cables. By Theorem 2.4 the minimal connected spanning subgraphs of a given graph are its spanning trees. So we look for a spanning tree of minimum weight, where we say that a subgraph . of a graph . with weights . : .(.) → ℝ has weight .(.(.))=∑..(.).