minuscule 发表于 2025-3-21 18:23:18
书目名称Combinatorial Mathematics V.影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0229930<br><br> <br><br>书目名称Combinatorial Mathematics V.影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0229930<br><br> <br><br>书目名称Combinatorial Mathematics V.网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0229930<br><br> <br><br>书目名称Combinatorial Mathematics V.网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0229930<br><br> <br><br>书目名称Combinatorial Mathematics V.被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0229930<br><br> <br><br>书目名称Combinatorial Mathematics V.被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0229930<br><br> <br><br>书目名称Combinatorial Mathematics V.年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0229930<br><br> <br><br>书目名称Combinatorial Mathematics V.年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0229930<br><br> <br><br>书目名称Combinatorial Mathematics V.读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0229930<br><br> <br><br>书目名称Combinatorial Mathematics V.读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0229930<br><br> <br><br>衰老 发表于 2025-3-21 23:47:35
Latin squares composed of four disjoint subsquares,Myosin 发表于 2025-3-22 02:22:33
http://reply.papertrans.cn/23/2300/229930/229930_3.pngprosthesis 发表于 2025-3-22 06:50:31
The knotted hexagon,al position in E.) be the set of vertices of some knotted hexagon, it is necessary that the convex hull K of the six points have six vertices (i.e. that no point lie inside the convex hull of the other five) and it is necessary and sufficient that K be of a certain combinatorial type, there being twcolloquial 发表于 2025-3-22 12:07:34
Sum-free sets in loops,he converse problem, of finding a sum-free partition and then obtaining the colouring looks like being much harder. Note also that there are still colourings of K. which cannot be obtained in this way. For example, if the colouring shown in Figure 7 were obtainabl from a loop {0,1,2,3,4,5} then threBetween 发表于 2025-3-22 16:46:46
http://reply.papertrans.cn/23/2300/229930/229930_6.pngBetween 发表于 2025-3-22 17:32:48
,A schröder triangle: Three combinatorial problems,. Three combinatorial interpretations of the sequences are given which are variants of interpretations of the Catalan numbers. The method of enumeration used is that of first or last passage decomposition. This leads to a renewal array having many of the properties of Pascal‘s triangle.projectile 发表于 2025-3-23 01:06:19
Anne Germain,Rebecca Campbell,Ashlee McKeone elements, say {1,2,3} would have to be in one of the sum-free sets. But then {0,4,5} would, by 3.1, be a subloop, and so neither 0–4 nor 4–0 could belong to {1,2,3}. (However, Heinrich has shown that this colouring can be embedded in a colouring of K. obtained from a sum-free partition of Z.).CLIFF 发表于 2025-3-23 05:27:41
http://reply.papertrans.cn/23/2300/229930/229930_9.pngRENIN 发表于 2025-3-23 06:26:43
http://reply.papertrans.cn/23/2300/229930/229930_10.png