Coronary-Artery 发表于 2025-3-21 17:53:11

书目名称Combinatorial Convexity and Algebraic Geometry影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0229901<br><br>        <br><br>书目名称Combinatorial Convexity and Algebraic Geometry影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0229901<br><br>        <br><br>书目名称Combinatorial Convexity and Algebraic Geometry网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0229901<br><br>        <br><br>书目名称Combinatorial Convexity and Algebraic Geometry网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0229901<br><br>        <br><br>书目名称Combinatorial Convexity and Algebraic Geometry被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0229901<br><br>        <br><br>书目名称Combinatorial Convexity and Algebraic Geometry被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0229901<br><br>        <br><br>书目名称Combinatorial Convexity and Algebraic Geometry年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0229901<br><br>        <br><br>书目名称Combinatorial Convexity and Algebraic Geometry年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0229901<br><br>        <br><br>书目名称Combinatorial Convexity and Algebraic Geometry读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0229901<br><br>        <br><br>书目名称Combinatorial Convexity and Algebraic Geometry读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0229901<br><br>        <br><br>

负担 发表于 2025-3-21 20:27:55

http://reply.papertrans.cn/23/2300/229901/229901_2.png

不连贯 发表于 2025-3-22 02:34:02

Graduate Texts in Mathematicshttp://image.papertrans.cn/c/image/229901.jpg

DEVIL 发表于 2025-3-22 05:12:36

Sketches of the Nineteenth Centuryly invariant manner. We do not, however, stress this point. If we use the symbol ℝ., it should be clear from the context whether we mean real vector space, real affine space, or Euclidean space. In the latter case, we assume the ordinary scalar product.so that the square of Euclidean distance betwee

过份好问 发表于 2025-3-22 12:20:30

Sketches of the Nineteenth Centuryint sets in ℝ.. Our first aim is to show that, equivalently, convex polytopes can be defined as bounded intersections of finitely many half-spaces. (This fact is of particular relevance in linear optimization).

老巫婆 发表于 2025-3-22 13:34:38

http://reply.papertrans.cn/23/2300/229901/229901_6.png

老巫婆 发表于 2025-3-22 20:26:10

http://reply.papertrans.cn/23/2300/229901/229901_7.png

intuition 发表于 2025-3-23 00:47:23

Gröbner Bases for Skew , Extensionsed by a quotient . of polynomials .,. with . nowhere 0 on .. Even more concretely, we may choose . to be a Zariski open subset of the torus . so that the rational functions on . are all given by rational functions on ..

ATP861 发表于 2025-3-23 01:44:44

http://reply.papertrans.cn/23/2300/229901/229901_9.png

arrogant 发表于 2025-3-23 08:56:56

Combinatorial theory of polytopes and polyhedral setsint sets in ℝ.. Our first aim is to show that, equivalently, convex polytopes can be defined as bounded intersections of finitely many half-spaces. (This fact is of particular relevance in linear optimization).
页: [1] 2 3 4 5
查看完整版本: Titlebook: Combinatorial Convexity and Algebraic Geometry; Günter Ewald Textbook 1996 Springer-Verlag New York, Inc. 1996 Dimension.Grad.Lattice.alge