controllers
发表于 2025-3-21 18:59:03
书目名称Combinatorial Algebra: Syntax and Semantics影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0229871<br><br> <br><br>书目名称Combinatorial Algebra: Syntax and Semantics影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0229871<br><br> <br><br>书目名称Combinatorial Algebra: Syntax and Semantics网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0229871<br><br> <br><br>书目名称Combinatorial Algebra: Syntax and Semantics网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0229871<br><br> <br><br>书目名称Combinatorial Algebra: Syntax and Semantics被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0229871<br><br> <br><br>书目名称Combinatorial Algebra: Syntax and Semantics被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0229871<br><br> <br><br>书目名称Combinatorial Algebra: Syntax and Semantics年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0229871<br><br> <br><br>书目名称Combinatorial Algebra: Syntax and Semantics年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0229871<br><br> <br><br>书目名称Combinatorial Algebra: Syntax and Semantics读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0229871<br><br> <br><br>书目名称Combinatorial Algebra: Syntax and Semantics读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0229871<br><br> <br><br>
flavonoids
发表于 2025-3-21 22:09:04
Textbook 2014nts for the more difficult problems, this book can be used as a textbook, and aims to reach a wide and diversified audience. No prerequisites beyond standard courses in linear and abstract algebra are required. The broad appeal of this textbook extends to a variety of student levels: from advanced
并排上下
发表于 2025-3-22 03:50:13
Rings, the Dubnov–Ivanov–Nagata–Higman theorem about associative algebras satisfying the identity . . = 0. Unlike semigroups, associative rings satisfying this identity are nilpotent. But there exist finitely generated non-nilpotent associative nil-algebras, and we describe the classical example of such an algebra constructed by Golod.
用不完
发表于 2025-3-22 06:44:58
Advances in Conceptual Modelingts in group theory of the 20th century. Its initial proof occupied more than 300 pages and was extremely complicated. Olshanskii managed to find a much simpler proof (for much bigger .). Our road map explains the main ideas and “points of interest” of Olshanskii’s proof.
讲个故事逗他
发表于 2025-3-22 09:38:10
http://reply.papertrans.cn/23/2299/229871/229871_5.png
Fierce
发表于 2025-3-22 14:57:33
http://reply.papertrans.cn/23/2299/229871/229871_6.png
Fierce
发表于 2025-3-22 19:07:23
Advances in Conceptual Modeling the Dubnov–Ivanov–Nagata–Higman theorem about associative algebras satisfying the identity . . = 0. Unlike semigroups, associative rings satisfying this identity are nilpotent. But there exist finitely generated non-nilpotent associative nil-algebras, and we describe the classical example of such an algebra constructed by Golod.
直觉好
发表于 2025-3-22 23:07:18
http://reply.papertrans.cn/23/2299/229871/229871_8.png
分解
发表于 2025-3-23 03:12:38
http://reply.papertrans.cn/23/2299/229871/229871_9.png
Armada
发表于 2025-3-23 06:33:44
http://reply.papertrans.cn/23/2299/229871/229871_10.png