两边在扩散 发表于 2025-3-21 19:48:06
书目名称Cohomology of Groups影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0229263<br><br> <br><br>书目名称Cohomology of Groups影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0229263<br><br> <br><br>书目名称Cohomology of Groups网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0229263<br><br> <br><br>书目名称Cohomology of Groups网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0229263<br><br> <br><br>书目名称Cohomology of Groups被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0229263<br><br> <br><br>书目名称Cohomology of Groups被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0229263<br><br> <br><br>书目名称Cohomology of Groups年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0229263<br><br> <br><br>书目名称Cohomology of Groups年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0229263<br><br> <br><br>书目名称Cohomology of Groups读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0229263<br><br> <br><br>书目名称Cohomology of Groups读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0229263<br><br> <br><br>Anterior 发表于 2025-3-21 20:46:47
Cohomology Theory of Finite Groups, .-modules (namely, the induced modules . ⊗ .) with the following properties: (a) Every . ∈ . is acyclic for both homology and cohomology. (b) For every .-module . there is a module . ∈ . such that . is a quotient of . and . can be embedded in ..树胶 发表于 2025-3-22 01:47:48
Textbook 1982pology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology. The basics of the subject are given (along with exercises) before the author discusses more specialized topics.libertine 发表于 2025-3-22 07:09:01
http://reply.papertrans.cn/23/2293/229263/229263_4.png分期付款 发表于 2025-3-22 10:07:06
http://reply.papertrans.cn/23/2293/229263/229263_5.png系列 发表于 2025-3-22 16:39:50
Some Homological Algebra,ed algebraic topology. The reader is advised to skip this section (or skim it lightly) and refer back to it as necessary. We will omit some of the proofs; these are either easy or else can be found in standard texts, such as Dold , Spanier , or MacLane .系列 发表于 2025-3-22 18:11:40
Products,.′. Note that if . is projective over . and .′ is projective over .′ then . ⊗ .′ is projective over .[. × .′]. In fact, it suffices to verify this in the case where . = . and .′ = .′, in which case the assertion follows from the obvious isomorphism . ⊗ .′ ≈ .[. × .′].高原 发表于 2025-3-22 23:19:38
http://reply.papertrans.cn/23/2293/229263/229263_8.pngGNAT 发表于 2025-3-23 05:23:13
http://reply.papertrans.cn/23/2293/229263/229263_9.pngVulvodynia 发表于 2025-3-23 09:17:11
Finiteness Conditions,take the topological point of view, then we can compute .(.) and .*(., .) in terms of an arbitrary K(G, 1)-complex .. Since we have this freedom of choice, it is reasonable to try to choose . (or . to be as “small” as possible, and this leads to various finiteness conditions on ..