独裁者 发表于 2025-3-21 16:34:12
书目名称Cohomological Theory of Dynamical Zeta Functions影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0229246<br><br> <br><br>书目名称Cohomological Theory of Dynamical Zeta Functions影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0229246<br><br> <br><br>书目名称Cohomological Theory of Dynamical Zeta Functions网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0229246<br><br> <br><br>书目名称Cohomological Theory of Dynamical Zeta Functions网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0229246<br><br> <br><br>书目名称Cohomological Theory of Dynamical Zeta Functions被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0229246<br><br> <br><br>书目名称Cohomological Theory of Dynamical Zeta Functions被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0229246<br><br> <br><br>书目名称Cohomological Theory of Dynamical Zeta Functions年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0229246<br><br> <br><br>书目名称Cohomological Theory of Dynamical Zeta Functions年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0229246<br><br> <br><br>书目名称Cohomological Theory of Dynamical Zeta Functions读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0229246<br><br> <br><br>书目名称Cohomological Theory of Dynamical Zeta Functions读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0229246<br><br> <br><br>轻弹 发表于 2025-3-21 21:42:06
The Verma Complexes on , and ,, complexes for A E -No to some Zelobenko complexes on Sn.. The analogous results for complexes of currents are used in the last section to prove Theorem 1.4. The convention introduced at the end of Chapter 4 is assumed to be in force throughout.心痛 发表于 2025-3-22 03:48:20
http://reply.papertrans.cn/23/2293/229246/229246_3.pngCERE 发表于 2025-3-22 05:18:08
http://reply.papertrans.cn/23/2293/229246/229246_4.pngConnotation 发表于 2025-3-22 09:54:45
http://reply.papertrans.cn/23/2293/229246/229246_5.png小步走路 发表于 2025-3-22 14:50:16
Harmonic Currents and Canonical Complexes, such that where H. is the orthogonal projection onto the harmonic p-forms (see , ). The latter identity implies the decompositionfor . E 1P (M), and if we assume as above that w is a finite sum of eigenforms for the first . eigenvalues then we obtain the formula小步走路 发表于 2025-3-22 17:41:38
Book 2001w of lo cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were suggesURN 发表于 2025-3-22 22:22:31
0743-1643 odesic flow of lo cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and w蔑视 发表于 2025-3-23 03:29:29
http://reply.papertrans.cn/23/2293/229246/229246_9.png光明正大 发表于 2025-3-23 08:52:58
http://reply.papertrans.cn/23/2293/229246/229246_10.png