LH941 发表于 2025-3-21 18:34:50
书目名称Cohomological Aspects in Complex Non-Kähler Geometry影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0229244<br><br> <br><br>书目名称Cohomological Aspects in Complex Non-Kähler Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0229244<br><br> <br><br>书目名称Cohomological Aspects in Complex Non-Kähler Geometry网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0229244<br><br> <br><br>书目名称Cohomological Aspects in Complex Non-Kähler Geometry网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0229244<br><br> <br><br>书目名称Cohomological Aspects in Complex Non-Kähler Geometry被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0229244<br><br> <br><br>书目名称Cohomological Aspects in Complex Non-Kähler Geometry被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0229244<br><br> <br><br>书目名称Cohomological Aspects in Complex Non-Kähler Geometry年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0229244<br><br> <br><br>书目名称Cohomological Aspects in Complex Non-Kähler Geometry年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0229244<br><br> <br><br>书目名称Cohomological Aspects in Complex Non-Kähler Geometry读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0229244<br><br> <br><br>书目名称Cohomological Aspects in Complex Non-Kähler Geometry读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0229244<br><br> <br><br>craven 发表于 2025-3-21 22:53:29
Sensory Pathways in the Ventral Quadrant,ng a sort of result . Nomizu for the Bott-Chern cohomology. This will allow us to explicitly study the Bott-Chern and Aeppli cohomologies of the . and of its small deformations, in Sect. 3.2, and of the complex structures on six-dimensional nilmanifolds in M. Ceballos, A. Otal, L. Ugarte, and R. Vil表被动 发表于 2025-3-22 00:35:30
http://reply.papertrans.cn/23/2293/229244/229244_3.pngbronchiole 发表于 2025-3-22 08:20:52
Cohomology of Complex Manifolds,g-P. Dolbeault-H. Skoda, années 1983/1984, Lecture Notes in Math., vol. 1198, Springer, Berlin, 1986, pp. 233–243). Finally, in Appendix: Cohomological Properties of Generalized Complex Manifolds, we consider how to extend such results to the symplectic and generalized complex contexts.Crumple 发表于 2025-3-22 12:33:28
Cohomology of Nilmanifolds,ng a sort of result . Nomizu for the Bott-Chern cohomology. This will allow us to explicitly study the Bott-Chern and Aeppli cohomologies of the . and of its small deformations, in Sect. 3.2, and of the complex structures on six-dimensional nilmanifolds in M. Ceballos, A. Otal, L. Ugarte, and R. Vil一美元 发表于 2025-3-22 16:04:29
http://reply.papertrans.cn/23/2293/229244/229244_6.png一美元 发表于 2025-3-22 20:53:54
http://reply.papertrans.cn/23/2293/229244/229244_7.png混合 发表于 2025-3-23 00:39:02
Cohomological Aspects in Complex Non-Kähler GeometryBarter 发表于 2025-3-23 03:52:41
http://reply.papertrans.cn/23/2293/229244/229244_9.pngNeedlework 发表于 2025-3-23 09:36:44
http://reply.papertrans.cn/23/2293/229244/229244_10.png