GALL 发表于 2025-3-21 18:46:11

书目名称Coherent Analytic Sheaves影响因子(影响力)<br>        http://impactfactor.cn/2024/if/?ISSN=BK0229197<br><br>        <br><br>书目名称Coherent Analytic Sheaves影响因子(影响力)学科排名<br>        http://impactfactor.cn/2024/ifr/?ISSN=BK0229197<br><br>        <br><br>书目名称Coherent Analytic Sheaves网络公开度<br>        http://impactfactor.cn/2024/at/?ISSN=BK0229197<br><br>        <br><br>书目名称Coherent Analytic Sheaves网络公开度学科排名<br>        http://impactfactor.cn/2024/atr/?ISSN=BK0229197<br><br>        <br><br>书目名称Coherent Analytic Sheaves被引频次<br>        http://impactfactor.cn/2024/tc/?ISSN=BK0229197<br><br>        <br><br>书目名称Coherent Analytic Sheaves被引频次学科排名<br>        http://impactfactor.cn/2024/tcr/?ISSN=BK0229197<br><br>        <br><br>书目名称Coherent Analytic Sheaves年度引用<br>        http://impactfactor.cn/2024/ii/?ISSN=BK0229197<br><br>        <br><br>书目名称Coherent Analytic Sheaves年度引用学科排名<br>        http://impactfactor.cn/2024/iir/?ISSN=BK0229197<br><br>        <br><br>书目名称Coherent Analytic Sheaves读者反馈<br>        http://impactfactor.cn/2024/5y/?ISSN=BK0229197<br><br>        <br><br>书目名称Coherent Analytic Sheaves读者反馈学科排名<br>        http://impactfactor.cn/2024/5yr/?ISSN=BK0229197<br><br>        <br><br>

宣誓书 发表于 2025-3-21 22:30:23

978-3-642-69584-1Springer-Verlag Berlin Heidelberg 1984

Permanent 发表于 2025-3-22 02:18:31

http://reply.papertrans.cn/23/2292/229197/229197_3.png

Vasoconstrictor 发表于 2025-3-22 04:54:01

0072-7830 Overview: 978-3-642-69584-1978-3-642-69582-7Series ISSN 0072-7830 Series E-ISSN 2196-9701

HEW 发表于 2025-3-22 12:47:56

http://reply.papertrans.cn/23/2292/229197/229197_5.png

嫌恶 发表于 2025-3-22 13:58:53

https://doi.org/10.1007/978-981-10-1142-9. in ℂ.,1 ≤ . < ∞, if . is replaced by a nowhere dense analytic set . in . If . has dimension ≤. −2 everywhere it is no longer necessary to assume that . is bounded in DA. These two statements are known as the . Extension Theorems; for the convenience of the reader we reproduce proofs in Section 1.

嫌恶 发表于 2025-3-22 19:57:06

http://reply.papertrans.cn/23/2292/229197/229197_7.png

弹药 发表于 2025-3-23 00:57:58

Legal Personnel in Rural SocietyFor example if . is just a single (reduced) point, coherence of the .-th image sheaf .(.) means that .(.).(.) is a finite dimensional complex vector space. There are many examples of non-compact spaces . where this is not the case.

Costume 发表于 2025-3-23 05:09:03

http://reply.papertrans.cn/23/2292/229197/229197_9.png

Compass 发表于 2025-3-23 06:36:01

Extension Theorem and Analytic Coverings,. in ℂ.,1 ≤ . < ∞, if . is replaced by a nowhere dense analytic set . in . If . has dimension ≤. −2 everywhere it is no longer necessary to assume that . is bounded in DA. These two statements are known as the . Extension Theorems; for the convenience of the reader we reproduce proofs in Section 1.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Coherent Analytic Sheaves; Hans Grauert,Reinhold Remmert Book 1984 Springer-Verlag Berlin Heidelberg 1984 Kohärente analytische Garbe.Math