GALL 发表于 2025-3-21 18:46:11
书目名称Coherent Analytic Sheaves影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0229197<br><br> <br><br>书目名称Coherent Analytic Sheaves影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0229197<br><br> <br><br>书目名称Coherent Analytic Sheaves网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0229197<br><br> <br><br>书目名称Coherent Analytic Sheaves网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0229197<br><br> <br><br>书目名称Coherent Analytic Sheaves被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0229197<br><br> <br><br>书目名称Coherent Analytic Sheaves被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0229197<br><br> <br><br>书目名称Coherent Analytic Sheaves年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0229197<br><br> <br><br>书目名称Coherent Analytic Sheaves年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0229197<br><br> <br><br>书目名称Coherent Analytic Sheaves读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0229197<br><br> <br><br>书目名称Coherent Analytic Sheaves读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0229197<br><br> <br><br>宣誓书 发表于 2025-3-21 22:30:23
978-3-642-69584-1Springer-Verlag Berlin Heidelberg 1984Permanent 发表于 2025-3-22 02:18:31
http://reply.papertrans.cn/23/2292/229197/229197_3.pngVasoconstrictor 发表于 2025-3-22 04:54:01
0072-7830 Overview: 978-3-642-69584-1978-3-642-69582-7Series ISSN 0072-7830 Series E-ISSN 2196-9701HEW 发表于 2025-3-22 12:47:56
http://reply.papertrans.cn/23/2292/229197/229197_5.png嫌恶 发表于 2025-3-22 13:58:53
https://doi.org/10.1007/978-981-10-1142-9. in ℂ.,1 ≤ . < ∞, if . is replaced by a nowhere dense analytic set . in . If . has dimension ≤. −2 everywhere it is no longer necessary to assume that . is bounded in DA. These two statements are known as the . Extension Theorems; for the convenience of the reader we reproduce proofs in Section 1.嫌恶 发表于 2025-3-22 19:57:06
http://reply.papertrans.cn/23/2292/229197/229197_7.png弹药 发表于 2025-3-23 00:57:58
Legal Personnel in Rural SocietyFor example if . is just a single (reduced) point, coherence of the .-th image sheaf .(.) means that .(.).(.) is a finite dimensional complex vector space. There are many examples of non-compact spaces . where this is not the case.Costume 发表于 2025-3-23 05:09:03
http://reply.papertrans.cn/23/2292/229197/229197_9.pngCompass 发表于 2025-3-23 06:36:01
Extension Theorem and Analytic Coverings,. in ℂ.,1 ≤ . < ∞, if . is replaced by a nowhere dense analytic set . in . If . has dimension ≤. −2 everywhere it is no longer necessary to assume that . is bounded in DA. These two statements are known as the . Extension Theorems; for the convenience of the reader we reproduce proofs in Section 1.