管玄乐团 发表于 2025-3-21 16:21:05

书目名称Cognitive Networked Sensing and Big Data影响因子(影响力)<br>        http://impactfactor.cn/2024/if/?ISSN=BK0229067<br><br>        <br><br>书目名称Cognitive Networked Sensing and Big Data影响因子(影响力)学科排名<br>        http://impactfactor.cn/2024/ifr/?ISSN=BK0229067<br><br>        <br><br>书目名称Cognitive Networked Sensing and Big Data网络公开度<br>        http://impactfactor.cn/2024/at/?ISSN=BK0229067<br><br>        <br><br>书目名称Cognitive Networked Sensing and Big Data网络公开度学科排名<br>        http://impactfactor.cn/2024/atr/?ISSN=BK0229067<br><br>        <br><br>书目名称Cognitive Networked Sensing and Big Data被引频次<br>        http://impactfactor.cn/2024/tc/?ISSN=BK0229067<br><br>        <br><br>书目名称Cognitive Networked Sensing and Big Data被引频次学科排名<br>        http://impactfactor.cn/2024/tcr/?ISSN=BK0229067<br><br>        <br><br>书目名称Cognitive Networked Sensing and Big Data年度引用<br>        http://impactfactor.cn/2024/ii/?ISSN=BK0229067<br><br>        <br><br>书目名称Cognitive Networked Sensing and Big Data年度引用学科排名<br>        http://impactfactor.cn/2024/iir/?ISSN=BK0229067<br><br>        <br><br>书目名称Cognitive Networked Sensing and Big Data读者反馈<br>        http://impactfactor.cn/2024/5y/?ISSN=BK0229067<br><br>        <br><br>书目名称Cognitive Networked Sensing and Big Data读者反馈学科排名<br>        http://impactfactor.cn/2024/5yr/?ISSN=BK0229067<br><br>        <br><br>

花争吵 发表于 2025-3-21 23:04:24

http://reply.papertrans.cn/23/2291/229067/229067_2.png

CRUMB 发表于 2025-3-22 01:46:46

https://doi.org/10.1007/978-3-642-69762-3ssed sensing exploits the sparsity structure in a vector, while low-rank matrix recovery—Chap. 8—exploits the low-rank structure of a matrix: sparse in the vector composed of singular values. The theory ultimately traces back to concentration of measure due to high dimensions.

鸽子 发表于 2025-3-22 05:04:19

http://reply.papertrans.cn/23/2291/229067/229067_4.png

instulate 发表于 2025-3-22 11:38:34

http://reply.papertrans.cn/23/2291/229067/229067_5.png

Bone-Scan 发表于 2025-3-22 13:04:08

Matrix Completion and Low-Rank Matrix Recoveryssed sensing exploits the sparsity structure in a vector, while low-rank matrix recovery—Chap. 8—exploits the low-rank structure of a matrix: sparse in the vector composed of singular values. The theory ultimately traces back to concentration of measure due to high dimensions.

Bone-Scan 发表于 2025-3-22 17:43:15

Two Principles for Self-OrganizationThe chapter contains standard results for asymptotic, global theory of random matrices. The goal is for readers to compare these results with results of non-asymptotic, local theory of random matrices (Chap. 5. A recent treatment of this subject is given by Qiu et al. .

有害 发表于 2025-3-22 22:27:01

https://doi.org/10.1007/978-3-642-69762-3This chapter is the core of Part II: Applications..Detection in high dimensions is fundamentally different from the traditional detection theory. Concentration of measure plays a central role due to the high dimensions. We exploit the bless of dimensions.

悬崖 发表于 2025-3-23 01:37:22

http://reply.papertrans.cn/23/2291/229067/229067_9.png

披肩 发表于 2025-3-23 08:45:36

Free Agents in a Cellular SpaceThe main goal of this chapter is to put together all pieces treated in previous chapters. We treat the subject from a system engineering point of view. This chapter motivates the whole book. We only have space to see the problems from ten-thousand feet high.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Cognitive Networked Sensing and Big Data; Robert Qiu,Michael Wicks Book 2014 The Editor(s) (if applicable) and The Author(s), under exclus