脸红 发表于 2025-3-21 19:52:29
书目名称Clifford Algebras and Lie Theory影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0227345<br><br> <br><br>书目名称Clifford Algebras and Lie Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0227345<br><br> <br><br>书目名称Clifford Algebras and Lie Theory网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0227345<br><br> <br><br>书目名称Clifford Algebras and Lie Theory网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0227345<br><br> <br><br>书目名称Clifford Algebras and Lie Theory被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0227345<br><br> <br><br>书目名称Clifford Algebras and Lie Theory被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0227345<br><br> <br><br>书目名称Clifford Algebras and Lie Theory年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0227345<br><br> <br><br>书目名称Clifford Algebras and Lie Theory年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0227345<br><br> <br><br>书目名称Clifford Algebras and Lie Theory读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0227345<br><br> <br><br>书目名称Clifford Algebras and Lie Theory读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0227345<br><br> <br><br>constellation 发表于 2025-3-21 20:26:53
http://reply.papertrans.cn/23/2274/227345/227345_2.pngEnrage 发表于 2025-3-22 01:48:25
The spin representation,ible Clifford module, the so-called spinor module. We give a discussion of pure spinors and their relation with Lagrangian subspaces, followed by a proof of Cartan’s triality principle. The classification of spinor modules for the case .=ℂ. is used to derive interesting properties of the spin groups, with applications to compact Lie groups.ascend 发表于 2025-3-22 06:41:52
Enveloping algebras,s to present a proof of this result, due to E. Petracci, which is similar to the proof that the quantization map for Clifford algebras is an isomorphism. The proof builds on a discussion of the Hopf algebra structure on the enveloping algebra, and the fact that the quantization map .. preserves the comultiplication.EPT 发表于 2025-3-22 09:42:31
Weil algebras,l algebra. As a .-differential algebra, this is shown to be quasi-isomorphic to .. The chapter concludes with applications of the two Weil algebras to Chern–Weil theory, equivariant cohomology, and transgression.Cardioplegia 发表于 2025-3-22 16:48:32
Applications to reductive Lie algebras, interpretation in terms of the spin representation. Following Kostant’s work, we consider applications of the cubic Dirac operator . for equal rank pairs. This includes the Gross–Kostant–Ramond–Sternberg results on multiplets of representations for equal rank Lie subalgebras, as well as aspects of Dirac induction.Cardioplegia 发表于 2025-3-22 20:00:59
http://reply.papertrans.cn/23/2274/227345/227345_7.pngCHOIR 发表于 2025-3-22 21:22:48
http://reply.papertrans.cn/23/2274/227345/227345_8.png痛苦一生 发表于 2025-3-23 03:09:45
http://reply.papertrans.cn/23/2274/227345/227345_9.png泥瓦匠 发表于 2025-3-23 06:31:55
https://doi.org/10.1057/9780230584174and the Transgression Theorem, showing that the space of primitive elements coincides with the image of the transgression map for the Weil algebra. The proofs make extensive use of Lie algebra homology and cohomology.