Cataplexy 发表于 2025-3-21 17:04:13
书目名称Clifford Algebra to Geometric Calculus影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0227342<br><br> <br><br>书目名称Clifford Algebra to Geometric Calculus影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0227342<br><br> <br><br>书目名称Clifford Algebra to Geometric Calculus网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0227342<br><br> <br><br>书目名称Clifford Algebra to Geometric Calculus网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0227342<br><br> <br><br>书目名称Clifford Algebra to Geometric Calculus被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0227342<br><br> <br><br>书目名称Clifford Algebra to Geometric Calculus被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0227342<br><br> <br><br>书目名称Clifford Algebra to Geometric Calculus年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0227342<br><br> <br><br>书目名称Clifford Algebra to Geometric Calculus年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0227342<br><br> <br><br>书目名称Clifford Algebra to Geometric Calculus读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0227342<br><br> <br><br>书目名称Clifford Algebra to Geometric Calculus读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0227342<br><br> <br><br>Rankle 发表于 2025-3-21 22:08:28
http://reply.papertrans.cn/23/2274/227342/227342_2.png集中营 发表于 2025-3-22 02:36:22
The Method of Mobiles,nifold and the definitions and notations for differentials and codifferentials established in Sections 4-1 and 4-3, and a couple of results from Chapter 4 are used without taking the trouble to rederive them by the method of this chapter.画布 发表于 2025-3-22 07:13:27
http://reply.papertrans.cn/23/2274/227342/227342_4.pnganagen 发表于 2025-3-22 11:06:47
http://reply.papertrans.cn/23/2274/227342/227342_5.pngaqueduct 发表于 2025-3-22 16:05:30
Overall Conclusion and Discussion,defined on more general subsets of . called manifolds, and this will be considered in Chapter 4. But in the interest of simplicity, it is best to study calculus on linear spaces first. Calculus on more general manifolds involves differential geometry.aqueduct 发表于 2025-3-22 20:13:57
Differentiation,defined on more general subsets of . called manifolds, and this will be considered in Chapter 4. But in the interest of simplicity, it is best to study calculus on linear spaces first. Calculus on more general manifolds involves differential geometry.不规则的跳动 发表于 2025-3-22 21:27:49
https://doi.org/10.1007/978-94-007-5527-7e generated by a few simple techniques. For example, Section 1-4 shows how easily geometric algebra generates the system of identities making up the theory of determinants. Thus we can see the theory of determinants as only part of a more comprehensive algebraic system.sultry 发表于 2025-3-23 04:48:35
https://doi.org/10.1007/3-540-59007-2re new, but our main objective is to demonstrate the unique advantages of the method and to develop the calculus to the point where application to any problem in differential geometry is straightforward.小木槌 发表于 2025-3-23 07:46:15
https://doi.org/10.1007/3-540-59007-2nifold and the definitions and notations for differentials and codifferentials established in Sections 4-1 and 4-3, and a couple of results from Chapter 4 are used without taking the trouble to rederive them by the method of this chapter.