专家 发表于 2025-3-21 19:45:06
书目名称Classical and Quantum Dynamics影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0227163<br><br> <br><br>书目名称Classical and Quantum Dynamics影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0227163<br><br> <br><br>书目名称Classical and Quantum Dynamics网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0227163<br><br> <br><br>书目名称Classical and Quantum Dynamics网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0227163<br><br> <br><br>书目名称Classical and Quantum Dynamics被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0227163<br><br> <br><br>书目名称Classical and Quantum Dynamics被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0227163<br><br> <br><br>书目名称Classical and Quantum Dynamics年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0227163<br><br> <br><br>书目名称Classical and Quantum Dynamics年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0227163<br><br> <br><br>书目名称Classical and Quantum Dynamics读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0227163<br><br> <br><br>书目名称Classical and Quantum Dynamics读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0227163<br><br> <br><br>商谈 发表于 2025-3-21 21:33:21
Action-Angle Variables,..) is the generator of a canonical transformation to new constant momenta .. (all .. are ignorable), and the new Hamiltonian depends only on the ..: . = . = .(..). Besides, the following canonical equations are valid:Foolproof 发表于 2025-3-22 04:13:25
Time-Independent Canonical Perturbation Theory, conservative, .∕. = 0, and periodic in both the unperturbed and perturbed case. In addition to periodicity, we shall require the Hamilton–Jacobi equation to be separable for the unperturbed situation. The unperturbed problem ..(..) which is described by the action-angle variables .. and .. will beRLS898 发表于 2025-3-22 05:57:06
http://reply.papertrans.cn/23/2272/227163/227163_4.png果核 发表于 2025-3-22 10:31:19
Removal of Resonances,rs appear in the expression for the adiabatic invariants. We now wish to begin to locally remove such resonances by trying, with the help of a canonical transformation, to go to a coordinate system which rotates with the resonant frequency.faculty 发表于 2025-3-22 13:08:17
http://reply.papertrans.cn/23/2272/227163/227163_6.pngfaculty 发表于 2025-3-22 19:30:08
,Poincaré Surface of Sections, Mappings,o-dimensional surface. If we then consider the trajectory in phase space, we are interested primarily in its piercing points through this surface. This piercing can occur repeatedly in the same direction. If the motion of the trajectory is determined by the Hamiltonian equations, then the . + 1-th p种子 发表于 2025-3-23 00:35:27
http://reply.papertrans.cn/23/2272/227163/227163_8.pnggenuine 发表于 2025-3-23 05:21:09
http://reply.papertrans.cn/23/2272/227163/227163_9.pngnonplus 发表于 2025-3-23 09:25:53
http://reply.papertrans.cn/23/2272/227163/227163_10.png