倒转 发表于 2025-3-23 12:32:53
http://reply.papertrans.cn/23/2244/224381/224381_11.pngInvertebrate 发表于 2025-3-23 16:03:55
http://reply.papertrans.cn/23/2244/224381/224381_12.pngExplicate 发表于 2025-3-23 20:21:16
http://reply.papertrans.cn/23/2244/224381/224381_13.png不愿 发表于 2025-3-23 23:20:28
http://reply.papertrans.cn/23/2244/224381/224381_14.pngEXTOL 发表于 2025-3-24 03:48:14
Chemical WavesThe phase description can explain expanding target patterns in reaction-diffusion systems. The same method, however, breaks down for rotating spiral waves because of a phase singularity involved. The Ginzburg-Landau equation is then invoked.Blazon 发表于 2025-3-24 06:48:18
http://reply.papertrans.cn/23/2244/224381/224381_16.pngThyroid-Gland 发表于 2025-3-24 13:27:36
https://doi.org/10.1007/978-3-642-69689-3Diffusion; Oscillation; behavior; bifurcation; dynamical system; dynamical systems; dynamics; equilibrium; f任意 发表于 2025-3-24 15:00:37
978-3-642-69691-6Springer-Verlag Berlin Heidelberg 1984黄油没有 发表于 2025-3-24 20:47:46
https://doi.org/10.1007/978-1-4471-4847-0er in time. The reaction-diffusion model is literally an appropriate model for studying the dynamics of chemically reacting and diffusing systems. Actually, the scope of this model is much wider. For instance, in the field of biology, the propagation of the action potential in nerves and nervelike t指令 发表于 2025-3-25 00:22:40
http://reply.papertrans.cn/23/2244/224381/224381_20.png