倒转
发表于 2025-3-23 12:32:53
http://reply.papertrans.cn/23/2244/224381/224381_11.png
Invertebrate
发表于 2025-3-23 16:03:55
http://reply.papertrans.cn/23/2244/224381/224381_12.png
Explicate
发表于 2025-3-23 20:21:16
http://reply.papertrans.cn/23/2244/224381/224381_13.png
不愿
发表于 2025-3-23 23:20:28
http://reply.papertrans.cn/23/2244/224381/224381_14.png
EXTOL
发表于 2025-3-24 03:48:14
Chemical WavesThe phase description can explain expanding target patterns in reaction-diffusion systems. The same method, however, breaks down for rotating spiral waves because of a phase singularity involved. The Ginzburg-Landau equation is then invoked.
Blazon
发表于 2025-3-24 06:48:18
http://reply.papertrans.cn/23/2244/224381/224381_16.png
Thyroid-Gland
发表于 2025-3-24 13:27:36
https://doi.org/10.1007/978-3-642-69689-3Diffusion; Oscillation; behavior; bifurcation; dynamical system; dynamical systems; dynamics; equilibrium; f
任意
发表于 2025-3-24 15:00:37
978-3-642-69691-6Springer-Verlag Berlin Heidelberg 1984
黄油没有
发表于 2025-3-24 20:47:46
https://doi.org/10.1007/978-1-4471-4847-0er in time. The reaction-diffusion model is literally an appropriate model for studying the dynamics of chemically reacting and diffusing systems. Actually, the scope of this model is much wider. For instance, in the field of biology, the propagation of the action potential in nerves and nervelike t
指令
发表于 2025-3-25 00:22:40
http://reply.papertrans.cn/23/2244/224381/224381_20.png