倒转 发表于 2025-3-23 12:32:53

http://reply.papertrans.cn/23/2244/224381/224381_11.png

Invertebrate 发表于 2025-3-23 16:03:55

http://reply.papertrans.cn/23/2244/224381/224381_12.png

Explicate 发表于 2025-3-23 20:21:16

http://reply.papertrans.cn/23/2244/224381/224381_13.png

不愿 发表于 2025-3-23 23:20:28

http://reply.papertrans.cn/23/2244/224381/224381_14.png

EXTOL 发表于 2025-3-24 03:48:14

Chemical WavesThe phase description can explain expanding target patterns in reaction-diffusion systems. The same method, however, breaks down for rotating spiral waves because of a phase singularity involved. The Ginzburg-Landau equation is then invoked.

Blazon 发表于 2025-3-24 06:48:18

http://reply.papertrans.cn/23/2244/224381/224381_16.png

Thyroid-Gland 发表于 2025-3-24 13:27:36

https://doi.org/10.1007/978-3-642-69689-3Diffusion; Oscillation; behavior; bifurcation; dynamical system; dynamical systems; dynamics; equilibrium; f

任意 发表于 2025-3-24 15:00:37

978-3-642-69691-6Springer-Verlag Berlin Heidelberg 1984

黄油没有 发表于 2025-3-24 20:47:46

https://doi.org/10.1007/978-1-4471-4847-0er in time. The reaction-diffusion model is literally an appropriate model for studying the dynamics of chemically reacting and diffusing systems. Actually, the scope of this model is much wider. For instance, in the field of biology, the propagation of the action potential in nerves and nervelike t

指令 发表于 2025-3-25 00:22:40

http://reply.papertrans.cn/23/2244/224381/224381_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: Chemical Oscillations, Waves, and Turbulence; Yoshiki Kuramoto Book 1984 Springer-Verlag Berlin Heidelberg 1984 Diffusion.Oscillation.beha