你太谦虚 发表于 2025-3-21 16:28:36
书目名称Characters and Cyclotomic Fields in Finite Geometry影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0224038<br><br> <br><br>书目名称Characters and Cyclotomic Fields in Finite Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0224038<br><br> <br><br>书目名称Characters and Cyclotomic Fields in Finite Geometry网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0224038<br><br> <br><br>书目名称Characters and Cyclotomic Fields in Finite Geometry网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0224038<br><br> <br><br>书目名称Characters and Cyclotomic Fields in Finite Geometry被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0224038<br><br> <br><br>书目名称Characters and Cyclotomic Fields in Finite Geometry被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0224038<br><br> <br><br>书目名称Characters and Cyclotomic Fields in Finite Geometry年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0224038<br><br> <br><br>书目名称Characters and Cyclotomic Fields in Finite Geometry年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0224038<br><br> <br><br>书目名称Characters and Cyclotomic Fields in Finite Geometry读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0224038<br><br> <br><br>书目名称Characters and Cyclotomic Fields in Finite Geometry读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0224038<br><br> <br><br>阻碍 发表于 2025-3-21 22:30:56
http://reply.papertrans.cn/23/2241/224038/224038_2.pngHeart-Attack 发表于 2025-3-22 00:58:47
Bibliography,Abstract not available生意行为 发表于 2025-3-22 06:56:24
Index,Abstract not availableSelf-Help-Group 发表于 2025-3-22 11:45:40
Characters and Cyclotomic Fields in Finite Geometry978-3-540-45797-8Series ISSN 0075-8434 Series E-ISSN 1617-9692古董 发表于 2025-3-22 15:19:27
Bernhard SchmidtIncludes supplementary material:古董 发表于 2025-3-22 19:23:07
Lecture Notes in Mathematicshttp://image.papertrans.cn/c/image/224038.jpgCoronation 发表于 2025-3-22 22:41:46
http://reply.papertrans.cn/23/2241/224038/224038_8.pngoutput 发表于 2025-3-23 01:38:05
978-3-540-44243-1Springer-Verlag Berlin Heidelberg 2002Commodious 发表于 2025-3-23 08:38:57
Book 2002trix Conjecture and Ryser`s conjecture since decades. It is shown that there is no Barker sequence of length l with 13<1<4x10^(12). Finally, a conjecturally complete classification of all irreducible cyclic two-weight codes is obtained.