遮阳伞 发表于 2025-3-21 16:03:36
书目名称Chaotic Systems with Multistability and Hidden Attractors影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0223932<br><br> <br><br>书目名称Chaotic Systems with Multistability and Hidden Attractors影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0223932<br><br> <br><br>书目名称Chaotic Systems with Multistability and Hidden Attractors网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0223932<br><br> <br><br>书目名称Chaotic Systems with Multistability and Hidden Attractors网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0223932<br><br> <br><br>书目名称Chaotic Systems with Multistability and Hidden Attractors被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0223932<br><br> <br><br>书目名称Chaotic Systems with Multistability and Hidden Attractors被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0223932<br><br> <br><br>书目名称Chaotic Systems with Multistability and Hidden Attractors年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0223932<br><br> <br><br>书目名称Chaotic Systems with Multistability and Hidden Attractors年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0223932<br><br> <br><br>书目名称Chaotic Systems with Multistability and Hidden Attractors读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0223932<br><br> <br><br>书目名称Chaotic Systems with Multistability and Hidden Attractors读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0223932<br><br> <br><br>Fibrillation 发表于 2025-3-21 22:55:31
Šil’nikov Theoremsphere, having an invariant subset that is homeomorphic to a topological Bernoulli process with two symbols. On the basis of the construction of this diffeomorphism, Smale developed a construction, which is now known as the “Smale horseshoe”.挑剔小责 发表于 2025-3-22 04:23:32
http://reply.papertrans.cn/23/2240/223932/223932_3.png泄露 发表于 2025-3-22 06:08:04
http://reply.papertrans.cn/23/2240/223932/223932_4.pngBOLT 发表于 2025-3-22 08:49:40
http://reply.papertrans.cn/23/2240/223932/223932_5.pngagglomerate 发表于 2025-3-22 15:30:45
2194-7287 potential applications.Presents a study of multistability an.This book presents a collection of new articles written by world-leading experts and active researchers to present their recent finding and progress in the new area of chaotic systems and dynamics, regarding emerging subjects of unconventiagglomerate 发表于 2025-3-22 18:32:14
https://doi.org/10.1007/b102240sence of such systems provides some new insights in the relationships between the local properties of a line or curve of equilibria and the complex dynamical behaviors of the underlying chaotic systems [.].表皮 发表于 2025-3-23 00:22:03
http://reply.papertrans.cn/23/2240/223932/223932_8.png健谈的人 发表于 2025-3-23 03:15:28
http://reply.papertrans.cn/23/2240/223932/223932_9.pngAnalogy 发表于 2025-3-23 08:14:25
http://reply.papertrans.cn/23/2240/223932/223932_10.png